
FORCESPRO

Version 6.1.0

FORCESPRO User Manual

Embotech AG
Giessereistrasse 18

CH-8005 Zürich

www.embotech.com

info@embotech.com

https://www.embotech.com
mailto:info@embotech.com

FORCESPRO User Manual

Contents

1 Introduction 1
1.1 Troubleshooting and support . 2
1.2 Licensing . 2
1.3 Citing FORCESPRO . 2
1.4 Product Life Cycle . 3
1.5 Release Notes . 4
1.6 Version history of manual . 15

2 License Variants 17
2.1 Variant Summary . 17
2.2 Variant S . 18
2.3 Variant M . 18
2.4 Variant L . 18

3 Installation 21
3.1 Obtaining FORCESPRO . 21
3.2 Installation of the MATLAB Client . 21
3.3 Installation of the Python Client . 23

4 Backward Compatibility 29
4.1 Determining Client Version . 29
4.2 Changes from Version 6.1.0 . 30
4.3 Changes from Version 6.0.0 . 30
4.4 Changes from Version 5.0.1 . 31
4.5 Changes from Version 5.0.0 . 31
4.6 Changes from Version 4.3.0 . 31
4.7 Changes from Version 4.2.0 . 31
4.8 Changes from Version 4.1.0 . 32

5 Y2F Interface 33
5.1 Installing Y2F . 33
5.2 Generating a solver . 34
5.3 Calling the solver . 34
5.4 Solver info . 34
5.5 Performance . 35
5.6 Examples . 36

6 MathWorks Linear MPC Plugin 37
6.1 Different types of solvers . 38
6.2 Different algorithms . 39
6.3 Generating a QP solver from an MPC object . 40
6.4 Solving a QP from MPC online data . 43
6.5 Using the FORCESPRO MPC Simulink block . 43
6.6 Deploy to dSpace MicroAutoBox II using the FORCESPRO MPC Simulink block 46
6.7 Examples . 48

7 MathWorks Nonlinear MPC Plugin 59

i

FORCESPRO User Manual

7.1 Introduction . 59
7.2 The SQP Fast algorithm for nlmpc . 60
7.3 Defining a nonlinear model . 61
7.4 Generating an NLP solver . 62
7.5 Simulation in MATLAB and Simulink . 68
7.6 Code generation in MATLAB and Simulink . 68
7.7 Examples . 68

8 Low-level interface 81
8.1 Supported problem class . 82
8.2 Multistage struct . 82
8.3 Dimensions . 83
8.4 Cost function . 83
8.5 Equality constraints . 83
8.6 Lower and upper bounds . 84
8.7 Polytopic constraints . 85
8.8 Quadratic constraints . 85
8.9 Binary constraints . 86
8.10 Declaring parameters . 86
8.11 Declaring Solver Outputs . 87
8.12 Generating the solver . 88
8.13 Calling the generated low-level solver . 88
8.14 Debugging a formulation . 89
8.15 The QP_FAST algorithm . 89

9 High-level Interface 91
9.1 Supported problems . 92
9.2 Expressing the optimization problem in code . 94
9.3 Generating a solver . 104
9.4 Calling the solver . 105
9.5 External function evaluations in C . 108
9.6 Calling the nonlinear functions from Matlab or Python 113
9.7 Mixed-integer nonlinear solver . 115
9.8 Sequential quadratic programming algorithm . 119
9.9 Differences between the MATLAB and the Python client 122
9.10 Examples . 123

10 Simulating your custom controller in Simulink® 125
10.1 The S-Function interface . 125
10.2 The Coder interface . 125
10.3 S-Function vs Coder interface . 126
10.4 FORCESPRO Simulink® blocks . 126

11 Examples 133
11.1 How to . 133
11.2 Y2F interface: Basic example . 149
11.3 Y2F interface: Trajectory Optimization for Quadrotor Flight 156
11.4 Low-level interface: Active Suspension Control . 160
11.5 Low-level interface: Robust estimation (Kalman filter) 165
11.6 Low-level interface: Spacecraft Rendezvous . 169
11.7 Low-level interface: DC/DC converter . 172
11.8 High-level interface: Basic example . 180
11.9 High-level interface: Obstacle avoidance (MATLAB & Python) 184
11.10 High-level interface: Indoor localization (MATLAB & Python) 194
11.11 High-level interface: Path tracking example (MATLAB) 198
11.12 High-level interface: Legacy path tracking example (MATLAB & Python) 209
11.13 High-level interface: Rate Constraints . 222
11.14 High-level interface: Soft Constraints . 227
11.15 Controlling a crane using a FORCESPRO NLP solver 231

ii

FORCESPRO User Manual

11.16 Real-time SQP Solver: Robotic Arm Manipulator (MATLAB & Python) 236
11.17 Controlling a DC motor using a FORCESPRO SQP solver 243
11.18 Mixed-integer nonlinear solver: F8 Crusader aircraft . 248
11.19 High-level interface: Optimal EV charging and speed profile example (MATLAB

& PYTHON) . 256
11.20 High-level interface: Extended optimal EV charging and speed profile example

using a 2D motor efficiency map (MATLAB & PYTHON) 282

12 Parametric problems 311
12.1 Defining parameters . 311
12.2 Example . 312
12.3 Parametric Quadratic Constraints . 313
12.4 Diagonal Hessians . 313
12.5 Sparse Parameters . 313
12.6 Special Parameters . 314
12.7 Python: Column vs Row Major Storage Format . 314

13 Code Deployment 315
13.1 Main Targets . 315
13.2 dSPACE deployment through Simulink Coder . 324
13.3 dSPACE deployment through ConfigurationDesk . 342
13.4 Speedgoat . 362
13.5 Speedgoat QNX . 380

14 Multicore parallelization 395
14.1 Internal parallelism . 395
14.2 External parallelism . 396
14.3 Combining external and internal parallelism . 397

15 Licensing 399
15.1 Machine Identification . 399
15.2 Static License . 400
15.3 License Files . 400
15.4 Floating Licenses . 401

16 Autotuner 405
16.1 Autotuner Options . 406
16.2 Collecting Tuning Data . 406
16.3 Validation . 407

17 Solver Options 409
17.1 Default options . 410
17.2 General options . 411
17.3 High-level interface options . 429
17.4 Convex branch-and-bound options . 441
17.5 Solve methods . 442

18 Exitflags 449
18.1 Exitflags and quality of the result . 449
18.2 Mixed integer Nonlinear Programming exitflags . 452

19 Modelling Utilities 453
19.1 Interpolations 1D (e.g. splines) . 453
19.2 Interpolations 2D (B-splines) . 455
19.3 Smooth Approximations . 464

20 Dumping Problem Formulation and Data 467
20.1 Why to use the dump tool? . 467
20.2 How to use the dump tool? . 468

iii

FORCESPRO User Manual

21 Frequently asked questions 479
21.1 Features of FORCESPRO . 479
21.2 Issues during code generation . 480
21.3 Issues when running the solver . 481
21.4 Simulink interface . 483
21.5 Code deployment . 483
21.6 Other topics . 484

Bibliography 487

iv

FORCESPRO User Manual

Chapter 1

Introduction

• Troubleshooting and support

• Licensing

• Citing FORCESPRO

• Product Life Cycle

• Release Notes

• Version history of manual

This is a user manual for FORCESPRO, a commercial tool for generating highly customized
optimization solvers that can be deployed on all embedded computers. FORCESPRO is in-
tended to be used in situations were the same optimization problem has to be solved many
times, possibly in real-time, with varying data, i.e. there is sufficient time in the design stage
for generating a customized solution for the problem you want to solve.

Figure 1.1: Overview of FORCESPRO.

The code generation engine in FORCESPRO extracts the structure in your optimization prob-
lem and automatically synthesizes a custom optimization solver. The resulting C code can
only solve one optimization problem (with certain data changing), hence it is typically many
times more efficient and smaller code size than general-purpose optimization solvers. The
generated C code is also library-free and uses no dynamic memory allocation making it suit-
able for safe deployment on real-time autonomous systems.

This document will show you how to input your optimization problem description for code
generation in FORCESPRO. It is important to point out that FORCESPRO is not a tool for trans-
forming a problem specification into an optimization problem description. This responsibility
lies with the user.

1

FORCESPRO User Manual

1.1 Troubleshooting and support

FORCESPRO typically returns meaningful error messages when code generation errors oc-
cur due to invalid user inputs. When encountering other errors please consult our documen-
tation which is included in the FORCESPRO client and is also available on all FORCESPRO
servers. In case you cannot find a solution to your problem please submit a bug report to
support@embotech.com.

Much effort has gone into making this interface easy to use. We welcome all your sugges-
tions for further improving the usability of the tool. Requests for special functionality for your
particular problem will also be considered by our development team. For all requests and
feedback please contact support@embotech.com.

1.2 Licensing

1.2.1 Commercial licensing

FORCESPRO licenses are available through a subscription model. There are four types of
licenses, as seen below:

• Engineer License: For generating FORCESPRO solvers. Charged per engineer com-
puter.

• Software Testing License (Sil/CI): For running FORCESPRO solvers on a desktop PC
or a server for simulation and (automated) testing. No physical system is controlled.
Charged per platform running the solver.

• Floating License: For running FORCESPRO solvers on servers or virtualised environ-
ments (such as Docker containers) without permanently mapping the license to a hard-
ware system. Charged per number of platforms able to concurrently run the solver. Cur-
rently available only on Linux x86/x86_64.

• Hardware Testing License (HiL/Field Testing): For controlling a physical system (i.e.
the target platform may also be an ECU or a rapid prototyping platform). Charged per
platform running the solver.

For more information regarding licensing please check on our website or contact
sales@embotech.com.

FORCESPRO licenses are available in variants S, M and L. For more information please check
the section License Variants

1.2.2 Academic licensing

Users at degree granting institutions can have access to the Engineer License version of
FORCESPRO free of charge provided they are not doing research for an industrial partner.
Software Testing and Hardware Testing licenses are also available at highly reduced rates.

1.3 Citing FORCESPRO

If you use FORCESPRO in published scientific work, please cite the following two papers:

@misc{FORCESPro,
Author = "Alexander Domahidi and Juan Jerez",
Howpublished = "Embotech AG, url=https://embotech.com/FORCES-Pro",

(continues on next page)

2 Chapter 1. Introduction

mailto:support@embotech.com
mailto:support@embotech.com
https://www.embotech.com/products/forcespro/licensing/
mailto:sales@embotech.com

FORCESPRO User Manual

(continued from previous page)

Title = "FORCES Professional",
Year = "2014--2019"

}

@article{FORCESNLP,
Author = "A. Zanelli and A. Domahidi and J. Jerez and M. Morari",
Title = "FORCES NLP: an efficient implementation of interior-point...

methods for multistage nonlinear nonconvex programs",
Journal = "International Journal of Control",
Year = "2017",
Pages = "1-17"
}

1.4 Product Life Cycle

A new major or minor version of FORCESPRO is released every quarter, with patch releases
in between. These new versions contain new functionalities and improvements in terms of
speed and robustness.

In order to be able to add novel features and improve existing ones at a high pace, FORCE-
SPRO uses continuous deployment as development policy. That also implies that we have
to ask users to update their clients if they want to benefit from the latest version of FORCE-
SPRO. In rare cases, this may also mean breaking backward compatibility (see also Section
Backward Compatibility) requiring users to either make the necessary changes in their own
code or to stick with an older version (and the corresponding server for code generation).

We guarantee that the codegen servers of any new version of FORCESPRO will be kept avail-
able for at least one year, starting from their respective release dates. Table 1.1 lists all release
dates since version 1.7.0 along with the actual or planned date for the corresponding code
generation server to go offline. In case you need an older version of FORCESPRO to be avail-
able beyond the scheduled offline date, please contact support@embotech.com so we can
work out a solution for you.

Chapter 1. Introduction 3

mailto:support@embotech.com

FORCESPRO User Manual

Table 1.1: Release Dates and Codegen Server Availabilities
FORCESPRO Version Release Date Actual or Planned Date Server goes Offline
6.1.0 2023-04-04 2024-06-30
6.0.1 2022-12-14 2024-01-31
6.0.0 2022-07-13 2024-01-31
5.1.0 2021-12-09 2023-06-30
5.0.1 2021-10-21 2023-06-30
5.0.0 2021-09-09 2023-06-30
4.4.0 2021-06-16 2023-05-31
4.3.1 2021-06-01 2022-09-08
4.3.0 2021-05-18 2022-09-08
4.2.1 2021-03-23 2022-09-08
4.2.0 2021-02-11 2022-09-08
4.1.1 2020-12-09 2022-09-08
4.1.0 2020-11-04 2022-09-08
4.0.0 2020-09-22 2021-10-15
3.1.0 2020-07-15 2021-07-15
3.0.1 2020-05-26 2021-05-31
3.0.0 2020-04-09 2021-03-15
2.0.0 2019-12-17 2020-12-15
1.9.1 2019-10-18 2020-10-01
1.9.0 2019-09-05 2020-05-15
1.8.0 2019-06-13 2020-04-01
1.7.0 2019-03-08 2019-10-01

1.5 Release Notes

1.5.1 New features in FORCESPRO 6.1.0

• Added support for CasADi MX expressions to MATLAB and Python client (with few limi-
tations)

• Added functionality to use 2D splines inside symbolic problem formulations to both
MATLAB and Python client

1.5.2 Improvements in FORCESPRO 6.1.0

• Change default dump tool from legacy dumps to symbolic dumps in MATLAB client

• Made plugin for The MathWorks Model Predictive Control Toolbox (TM) work with
R2023a

• Added platform support for AARCH-Cortex-A53

• Improvements to the Simulink Coder interface, e.g. added support for solvers generated
via the Python client

• Introduced dedicated exitflags to handle bad (negative) return values of external call-
backs

• Added utility script stages2qcqp to Python client to convert FORCESPRO low-level for-
mulations into standard (QC)QPs

4 Chapter 1. Introduction

FORCESPRO User Manual

1.5.3 Bug Fixes in FORCESPRO 6.1.0

• Fixed a couple of compatibility issues in Python client

• Ensured consistency of parametric and hardcoded tolerances for PDIP_NLP

• Fix for Hessian regularization in SQP_NLP

• Fixed splitting of ComparisonOutputs and ComparisonObjectives for QP Fast and SQP
Fast tuning

• Fixed issues with parameter indices for MINLP and binary QPs

• Removed FMA operations when AVX has been disabled

• Fixes for initial state with Python client formulation

1.5.4 Improvements in FORCESPRO 6.0.1

• Added Coder interface for solvers (MATLAB and Simulink)

• Made plugin for The MathWorks Model Predictive Control Toolbox (TM) work with
R2022b

• Floating point functions now follow precision accuracy

• Added strict size check for E matrix in Python client

• Changed Python default codeoptions to be consistent with MATLAB ones

1.5.5 Bug Fixes in FORCESPRO 6.0.1

• Fixed Python convexity check for case of continuous dynamics

• Fixed objective function computation when tuning QP_FAST solver

• Fixed bugs related to saturateFloats, optimization options and certain linear algebra op-
erations

• Fixed code generator issue when using the compact_code feature

• Fixed multi-threaded code for parallel>0 and compact_code

1.5.6 New features in FORCESPRO 6.0.0

• Introduced solvemethod QP_FAST as well as SQP Fast algorithm to MATLAB client and
plugin for The MathWorks Model Predictive Control Toolbox (TM); including automatic
tuning and validation functionality

• Made SQP algorithm run with floattype 'float'

• Adapted C interface implementing thread-safe memory layout for all solvers (except
those including binary or integer variables)

• Added C library functions returning required solver memory

• Enabled possibility to combine both internal and external parallelism

• Added support for code generation for the Infineon AURIX(TM) platform

• Removed legacy Simulink GUI from MATLAB client

Chapter 1. Introduction 5

FORCESPRO User Manual

1.5.7 Improvements in FORCESPRO 6.0.0

• Added real-time parameter parametric_iterations to adjust maximum number of iter-
ations during runtime

• Added real-time parameter solver_exit to early-terminate solver

• Passing inner QP exitflag and iterations to info struct of SQP_NLP

• Added new client function to get default codeoptions

• Allow for diagonal Hessians when stacking parameters

• Made plugin for The MathWorks Model Predictive Control Toolbox (TM) work with
R2022a

• Renamed casadi2forces interface to adtool2forces and changed type to int to return
exitcode

• Added functionality to configure server certificate authentication for web requests of
FORCESPRO client

• Added solver ID as part of the FORCESPRO solver interfaces

• Added new client example illustrating time-optimal EV charging and operation in both
MATLAB and Python client

1.5.8 Bug Fixes in FORCESPRO 6.0.0

• Fixed initialization when using nlp.BarrStrat = "monotone"

• Fixed bugs related to stacked parameters

• Fixed two bugs in low-level linear algebra functions

• Addressed MISRA C issues in SQP solver

• Added solvername prefix to sparse2fullcopy function

1.5.9 New features in FORCESPRO 5.1.0

• Added Floating License Proxy packages for floating license connections

1.5.10 Improvements in FORCESPRO 5.1.0

• Added more advanced path tracking example to MATLAB client

• Made plugin for The MathWorks Model Predictive Control Toolbox (TM) work with R2021b

• Made MATLAB client compatible with R2014b

1.5.11 Bug Fixes in FORCESPRO 5.1.0

• Robustified array conversions for Interpolation in Python client

• Bugfix in SQP solver to use correct tolerances in underlying QP solver

• Fixed issue in SQP log when showing solvetime

• Small bugfix in loading of symbolic dumps in MATLAB

6 Chapter 1. Introduction

FORCESPRO User Manual

1.5.12 New features in FORCESPRO 5.0.1

• Added MEX interfaces and Python interfaces for calling nonlinear callback functions
stand-alone on user side

1.5.13 Improvements in FORCESPRO 5.0.1

• Re-enabled generation of ADMM solvers via Python client

• Extended code generation floating license options; improved floating licensing’s perfor-
mance and robustness

• Added files for requirements in Python client and made suds package optional

1.5.14 Bug Fixes in FORCESPRO 5.0.1

• Bugfix in callback evaluations function of SQP solver

• Bugfix for detection of affine inequalities in SQP solver in Python client

• Fixed MISRA C issues when using SQP solver or using float callbacks with chainrule in-
tegrators

• Fixed issue with loading old dumps in Python

1.5.15 New features in FORCESPRO 5.0.0

• Added improved symmetric indefinite linear solver and iterative refinement

• Added CasADi 3.5.5 support also to Python client and made it default AD tool in both
clients

• Added support for Python 3.9

1.5.16 Improvements in FORCESPRO 5.0.0

• Added Y2F example for optimizing trajectory of quadrotor flight

• Added support for server connection via RestAPI

• Added option to export lower triangular BFGS

1.5.17 Bug Fixes in FORCESPRO 5.0.0

• Minor bugfixes in low-level and high-level interface solver interface

• Fix to handle scalar input arguments to interpolations in Python client

• Added fixes for size one parameters

• Improved adherence to C90 standard and MISRA C rules

• Bugfix concerning nonlinear inequalities detection in Python client

Chapter 1. Introduction 7

FORCESPRO User Manual

1.5.18 New features in FORCESPRO 4.4.0

• Implemented linear subsystem exploitation for explicit chainrule integrator RK4

• Implemented chainrule variant for integrator IRK2

• Added support for dSPACE SCALEXIO and dSPACE MicroLabBox

• Added functionality to use interpolations (such as splines) inside symbolic problem for-
mulations to both MATLAB and Python client

1.5.19 Improvements in FORCESPRO 4.4.0

• Added Python variant of ForcesMin/ForcesMax, wrapped into new modelling sub-
package

1.5.20 Bug Fixes in FORCESPRO 4.4.0

• Fixed minor issues with return flags of SQP solver, e.g. in case of license error

1.5.21 Improvements in FORCESPRO 4.3.1

• Added support for server connection via proxy in Python client

1.5.22 Bug Fixes in FORCESPRO 4.3.1

• Fixed bug for code option threadSafeExpert causing two static variables

• Added missing code option nlp.max_num_threads to Python client

1.5.23 New features in FORCESPRO 4.3.0

• Added support to formulate and solve multi-stage nonlinear MPC problems with The
MathWorks Model Predictive Control Toolbox (TM)

• Added code option threadSafeExpert to give users full control over memory allocation
when running multiple instances of an PDIP_NLP or PDIP solver

• Added support for CasADi 3.5.5 in the MATLAB client

1.5.24 Improvements in FORCESPRO 4.3.0

• Made CasADi 3.5.1 default AD tool also in the MATLAB client

• Added support for single (stacked) solution vector for solvers PDIP_NLP and SQP_NLP

• Added more thorough check for identical stages in MATLAB client along with new code
option nlp.strictCheckDistinctStages

• Let FORCESversion also return planned offline date of client version

• Added new client examples demonstrating how to formulate problems comprising soft
and rate constraints using the high-level interface

8 Chapter 1. Introduction

FORCESPRO User Manual

1.5.25 Bug Fixes in FORCESPRO 4.3.0

• Fixed freeing of DLLs in Python Client

• Fixed issue with code option noVariableElimination is used along with linear solver
normal_eqs in MATLAB client

1.5.26 Improvements in FORCESPRO 4.2.1

• Added msgpack support for MacOS

• Added separate optlevel options for host and target

• Improved robustness of client connection to the codegen server

• Added support for custom parameters in Python client

1.5.27 Bug Fixes in FORCESPRO 4.2.1

• Bugfix in QP solver caused by code optimization for source in src_target folder

• Fixed bug in ADMM method

1.5.28 New features in FORCESPRO 4.2.0

• Added support for dumping of problem formulation from C

• Added support for NI cRIO platforms

• Created Simulink Fingerprinters for platforms with Simulink Model deployment

• Added Speedgoat (for MATLAB R2020b and later) example for The MathWorks Model
Predictive Control Toolbox (TM)

• Added support for single precision callbacks, i.e. mixed-precision NLP solution

1.5.29 Improvements in FORCESPRO 4.2.0

• Changed to new server communication in MATLAB client for improved safety and con-
nection stability

• Reenabled chainrule integrators as default integrator when using continuous dynamics,
and fixed performance issues

• Extended Speedgoat support to more MATLAB/Simulink Real-Time releases

1.5.30 Improvements in FORCESPRO 4.1.1

• Improved hashing of sparse linear algebra routines

• Fixed MATLAB network communication, replaced deprecated SOAP methods with new
ones, enabled with legacyNetworkConnections = 0

• Parallel BFGS updates with compact_code = 0 (default)

• Prevent MATLAB client to overwrite user script if solver has same filename

• Throw proper exceptions when block structure is not detected in sparse parametric
equalities in low-level interface

Chapter 1. Introduction 9

FORCESPRO User Manual

• Parallel callbacks evaluation with compact_code = 1 and parallel >= 1

• Reverted to legacy integrators in default behaviour

• Added code generation compatibility with MATLAB 2016a

• Various fixes and updates in the API of the Python dump tool

1.5.31 Bug Fixes in FORCESPRO 4.1.1

• Fixed FORCESconfigureClient to work on all OS

• Fixed codegen failure with compact_code related to nonlinear inequalities

• Disabled compact_code when initial equality constraint not eliminated (D0)

• Restored functionality to collect variable declarations at beginning of CasADi callbacks
(only if c90 code option is set)

• Bug fix for copy of scaler parameters with compact_code = 1

1.5.32 New features in FORCESPRO 4.1.0

• Code-generated explicit integrators and sensitivity with chain rule and variational differ-
ential equation

• Python dump tool and compatible MATLAB dump tool

• Option for adding a single external callback instead of adding all callbacks externally

• Added solver and webcompiler support for speedgoat (for MATLAB R2020b and later)

1.5.33 Improvements in FORCESPRO 4.1.0

• Scalar parameters are not treated as arrays anymore for compatibility with MATLAB
Coder. To enable the previous behaviour set code option size_one_param_as_array = 1

• Separated CasADi and Symbolic math toolbox callbacks to have more control over dy-
namics callbacks.

• Introduce code option separateCasadiFiles which when set to 1 ensures old callback file
structure (separate model files).

• Replaced old obstacle avoidance client examples for python and MATLAB by new inter-
active ones

• Added path tracking example for the python and the MATLAB client

1.5.34 Bug Fixes in FORCESPRO 4.1.0

• Fixed Simulink and standalone Python interface using scalar parameters

• Fixed some openmp issues and added number of threads as runtime parameter

10 Chapter 1. Introduction

FORCESPRO User Manual

1.5.35 New features in FORCESPRO 4.0.0

• Support for FORCESPRO NLP solvers (PDIP_NLP and SQP_NLP) in The MathWorks Model
Predictive Control Toolbox (TM)

• Solver timeout option for PDIP_NLP, SQP_NLP and PDIP

• New code option exportBFGS which enables export of BFGS diagonal on every stage

1.5.36 Improvements in FORCESPRO 4.0.0

• Server now returns interface/definitions.py file independent of whether the request
was sent from the MATLAB or Python client

• Added support for symbolic step size in Python integrators

• Added connection tester for the FORCESPRO server

• Added new parameter type Adense to allow copy of dense A matrix to sparse internally.
Should be used within Model Predictive Control Toolbox plugin only!

• New option nlp.parametricBFGSinit for initializing BFGS matrix as a run-time parameter

1.5.37 Bug Fixes in FORCESPRO 4.0.0

• Fixed export of root relaxation solution in MINLP solver

• Fixed number of outputs in ADMM method

• Added fix for floattype 'int' and 'short'

• Fixed issue occuring in Python client when all initial or all final variables are fixed

• Fixed reading issue in csmatio library

1.5.38 New features in FORCESPRO 3.1.0

• High-level Python interface for NLP solvers

1.5.39 Improvements in FORCESPRO 3.1.0

• Vectorized outer product on one-stage dense QP problems in double precision on Intel
platforms

• Refactoring of clients and server to enable standalone release

• Check for vectorization instructions in Python client, refactored C code in DLL

• Made variables in generated interface static

• Improved efficiency of CasADi file postprocessing in MATLAB client

• Export of dual variables in solver PDIP_NLP

• Fixed updateClient scripts to delete old data

• Made FORCES_NLP return dumped formulation even if an error occurs during execu-
tion

• Allow to specify directory when saving dumped problem formulation/instance

Chapter 1. Introduction 11

FORCESPRO User Manual

1.5.40 Bug Fixes in FORCESPRO 3.1.0

• Fix in detection of selection matrix

• Fix in CasADi for linux systems

• Fixed bug with stacked parametric bounds

• Updated accessing of Stage properties to work with obfuscation

• fix issue with variable number of equality constraints in convex problems

• Fixed issue in CasADi code generation

• Fixed internal rounding heuristic in MINLP solver

1.5.41 Improvements in FORCESPRO 3.0.1

• New nlp.stack_parambounds for stacking parametric bounds over stages with solvers
PDIP_NLP and SQP_NLP

• Support for MicroAutoBox III

1.5.42 Bug Fixes in FORCESPRO 3.0.1

• Bug fix in fraction to boundary rule

• Bug fixes for specific compilation settings

• Fixed download of CasADi for macos

• Fixed bug in model files declarations in casadi2forces with solver SQP_NLP

1.5.43 New features in FORCESPRO 3.0.0

• Real-time sequential quadratic programming solver via code option SQP_NLP

• Support for MathWorks Symbolic Math Toolbox and CasADi 3.5.1 (with limitations)

• Code option nlp.compact_code for generating small-size code on long horizon problems

• Support for license files

• Option for dumping problem formulation and data for support

1.5.44 Improvements in FORCESPRO 3.0.0

• Revamped licensing system

• Removed object files from dowloaded solver package

1.5.45 Bug Fixes in FORCESPRO 3.0.0

• Fixed bug with number of stages and integer guess in MINLP solver

12 Chapter 1. Introduction

FORCESPRO User Manual

1.5.46 New features in FORCESPRO 2.0.0

• Introduced support for FORCESPRO QP solvers in the The MathWorks Model Predictive
Control Toolbox (TM)

• Created new examples for the MPC Toolbox plugin

1.5.47 Improvements in FORCESPRO 2.0.0

• Made tolerances on equalities, inequalities, stationarity and complementarity run-time
parameters in NLP solver

• Automatic disabling of vectorization when some matrix parameters are sparse

1.5.48 Bug Fixes in FORCESPRO 2.0.0

• Fixed linking issue with avx on linux host

• Fixed mex interface to not copy empty parameters

• Fixed bug with MINLP solver exitflag on infeasible problems

1.5.49 New features in FORCESPRO 1.9.1

• Adapted FORCESPRO license check to portal database

• Adapted floating license database checks to portal database

• Made linear algebra vectorization stage dependent

1.5.50 Improvements in FORCESPRO 1.9.1

• Fixed numerical bug in NLP line-search

1.5.51 New features in FORCESPRO 1.9.0

• New code-generation options for AVX and NEON vectorization

• New code generation options and parameters to provide an integer guess to the MINLP
solver

• New runtime parameter parallelStrategy for MINLP solver

• Created dedicated Floating License web Server

1.5.52 Improvements in FORCESPRO 1.9.0

• Changed floating license communication to http

• Enabled user-defined outputs in MINLP solver

• Added code option c90 to add extra C definitions in CasADi model files

• Added openmp flag to nvidia webcompiler

• Added support for Python 3.6

• Updated usysid files in client

Chapter 1. Introduction 13

FORCESPRO User Manual

1.5.53 Bug Fixes in FORCESPRO 1.9.0

• Fixed bug with constraints handling in code-generation

• Fixed memory bug in MINLP solver

• Fixed bug in parameters indexing in client. Parameters are now indexed with a fixed
number of digits depending on the horizon length. 1 digit below 10, 2 digits between 10
and 100 excluded,. . .

• Fixed bug with stacked parameter ineq.p.b

1.5.54 New features in FORCESPRO 1.8.0

• Mixed-integer nonlinear solver with parallelizable search and other customization fea-
tures

• Support for the Speedgoat platform

• Support for the Integrity ARM platform

• Support for Docker containers

• Updated newParam API to allow for parameters stacked over stages

1.5.55 Improvements in FORCESPRO 1.8.0

• Improved performance of compactSparse feature

• Added custom headers to specify platforms

1.5.56 Bug Fixes in FORCESPRO 1.8.0

• Fixed numerical bug in v1.7.0

1.5.57 New features in FORCESPRO 1.7.0

• MISRA 2012 compliance, no mandatory or required violations in generated C code

• Added support for dSPACE MicroAutoBox II

• Added support for ARM Cortex A72 platforms

• Added support for MinGW as a mex compiler

• New code option compactSparse for smaller code and faster compilation of sparse prob-
lems

• Added threadSafeStorage option, enabling creation of thread-safe solvers (requires C11
compilers)

1.5.58 Improvements in FORCESPRO 1.7.0

• Improved codegen speed for sparse problems

• Improved web compilation to reduce http timeouts

• Secure client-server communication under custom embotech domain

• Improved portability of functions used

14 Chapter 1. Introduction

FORCESPRO User Manual

• Added display of license and solver expiration as well as generation id on header files

• Updated FORCEScleanup to include all solver related files

• Improved messages and warnings returned from FORCESPRO client

• Now passing iteration number to function evaluations

• Added new error code for invalid parameter initial values

1.5.59 Bug Fixes in FORCESPRO 1.7.0

• Changed default server when default server file is missing

• Always check for default server files when choosing server to use

• Corrected the logic for updating the best solution found so far (NLP)

• Fixed sparse linear algebra routine names

1.6 Version history of manual

The version history of this document is presented in Version history of FORCESPRO manual.

Table 1.2: Version history of FORCESPRO manual
Version Revision Date Reason for change
1 0 2017-04-10 Initial version
2 0 2018-09-27 Overhaul of outdated manual
2 1 2018-11-19 Add dSPACE code deployment
3 0 2019-02-20 Updated manual for v1.7.0
4 0 2019-06-04 Updated manual for v1.8.0
4 1 2019-08-29 Updated manual for v1.9.0
5 0 2019-10-10 Updated manual for v1.9.1
6 0 2019-12-09 Updated manual for v2.0.0
7 0 2020-04-07 Updated manual for v3.0.0
7 1 2020-05-26 Updated manual for v3.0.1
7 2 2020-07-13 Updated manual for v3.1.0
8 0 2020-09-21 Updated manual for v4.0.0
8 1 2020-10-30 Updated manual for v4.1.0
8 2 2020-12-07 Updated manual for v4.1.1
8 3 2021-02-09 Updated manual for v4.2.0
8 4 2021-03-18 Updated manual for v4.2.1
8 5 2021-05-11 Updated manual for v4.3.0
8 6 2021-05-31 Updated manual for v4.3.1
8 7 2021-06-15 Updated manual for v4.4.0
9 0 2021-09-08 Updated manual for v5.0.0
9 1 2021-10-20 Updated manual for v5.0.1
9 2 2021-12-08 Updated manual for v5.1.0
10 0 2022-07-08 Updated manual for v6.0.0
10 1 2022-12-13 Updated manual for v6.0.1
10 2 2023-04-04 Updated manual for v6.1.0

Chapter 1. Introduction 15

FORCESPRO User Manual

16 Chapter 1. Introduction

FORCESPRO User Manual

Chapter 2

License Variants

• Variant Summary

• Variant S

• Variant M

• Variant L

Each problem type requires a dedicated solver method in order to be solved quickly and
efficiently. FORCESPRO is available in different variants in order to adapt to each user’s needs.
When receiving a FORCESPRO license on the portal(https://my.embotech.com) a user can
select one of the available variants which is best suited for the problem to be solved. At any
point, a user can decide to upgrade to a larger variant in order to include additional solver
methods in their available toolset for FORCESPRO.

The available variants are (smaller variants are included in larger ones):

• S (Variant S)

• M (Variant M)

• L (Variant L)

2.1 Variant Summary

In the tables below you can find a summary of the components provided with each variant
of FORCESPRO.

Table 2.1: Problem types supported for each variant
S M L

Problem Type
LP X X X
QP X X X
QCQP X X X
BI-QP X X
NLP (SQP) X X
NLP (IP) X
MINLP X

17

https://my.embotech.com

FORCESPRO User Manual

Table 2.2: Interfaces provided for each variant
S M L

Interface
MATLAB Low-Level X* X X
Python Low-Level X* X X
MATLAB Y2F X X X
MathWorks MPC Toolbox™ (Linear MPC) X X X
MATLAB High-Level X** X
Python High-Level X** X
MathWorks MPC Toolbox™ (Nonlinear MPC) X** X
* No Binary Constraints
** Only with SQP method

2.2 Variant S

This variant is used for generation of convex solvers. This variant should be used for solving:

• LP problems

• QP problems

• QCQP problems

This variant is delivered with the following interfaces:

• MATLAB Low-level Interface (Low-level interface)

• Python Low-level Interface (Low-level interface)

• MATLAB Y2F Interface (Y2F Interface)

• MathWorks Model Predictive Control Toolbox™ - Linear MPC (MathWorks Linear MPC
Plugin)

2.3 Variant M

This variant further enables the generation of SQP solvers for NLPs and the solution of Binary-
Integer QPs. This variant should be used for solving:

• Binary-Integer QP problems (Binary constraints)

• NLP Problems using SQP methods (Sequential quadratic programming algorithm)

This variant is delivered with the following interfaces:

• MATLAB High-level Interface (High-level Interface) with codeoptions.solvemethod =
‘SQP_NLP’;

• Python High-level Interface (High-level Interface) with codeoptions.solvemethod =
‘SQP_NLP’

• MathWorks Model Predictive Control Toolbox™ - Nonlinear MPC (MathWorks Nonlinear
MPC Plugin) with options.SolverType = ‘SQP’;

2.4 Variant L

This variant provides the full experience of FORCESPRO and enables all its features. This vari-
ant further enables the solution of:

18 Chapter 2. License Variants

FORCESPRO User Manual

• NLP problems with Interior-Point Methods and SQP

• MINLP problems (Mixed-integer nonlinear solver)

This variant is delivered with the following interfaces:

• MATLAB High-level Interface (High-level Interface) with full support

• Python High-level Interface (High-level Interface) with full support

• MathWorks Model Predictive Control Toolbox™ - Nonlinear MPC (MathWorks Nonlinear
MPC Plugin) with full support

Chapter 2. License Variants 19

FORCESPRO User Manual

20 Chapter 2. License Variants

FORCESPRO User Manual

Chapter 3

Installation

3.1 Obtaining FORCESPRO

FORCESPRO is a client-server code generation system. The user describes the optimization
problem using the client software, which communicates with the server for code generation
(and compilation if applicable). The client software is the same for all users, independent of
their license type.

In order to obtain FORCESPRO, follow the steps below:

1. Inquire a license from https://www.embotech.com/products/forcespro/licensing/ or by
directly contacting licenses@embotech.com.

2. After receiving a license, if registered on the portal, the FORCESPRO client can be down-
loaded from the portal after assigning an Engineering Node. For more information see
https://my.embotech.com/readme. Otherwise the FORCESPRO client will be sent to you
via email.

3. Unzip the downloaded client into a convenient folder.

Note: The FORCESPRO client contains several inner ZIP-files for the Python client named
forcesproXY.zip. These do not need to be extracted!

3.2 Installation of the MATLAB Client

• System requirements

• Keeping FORCESPRO up to date

• Installing and running older versions of FORCESPRO

Add the path of the downloaded folder FORCES_PRO to the MATLAB path by using the com-
mand addpath DIRNAME, e.g. by typing:

addpath /home/user/FORCES_PRO

on your MATLAB command prompt. Alternatively, you can add the path of the FORCES_PRO
folder via the graphical user interface of MATLAB as seen in Figure 3.1.

Having added the root folder of the FORCESPRO MATLAB client to the MATLAB path one
configures the client to the specific MATLAB version by running

21

https://www.embotech.com/products/forcespro/licensing/
mailto:licenses@embotech.com
https://my.embotech.com/readme

FORCESPRO User Manual

Figure 3.1: Adding the FORCES_PRO folder to the MATLAB path.

FORCESconfigureClient;

in the MATLAB command window. After the FORCESPRO MATLAB client has been config-
ured one can save the MATLAB path in order to always have access to FORCESPRO when
initiating a new MATLAB session. Alternatively one perform the above 2 steps whenever ini-
tiating a new MATLAB session.

3.2.1 System requirements

FORCESPRO is supported on Windows, macOS and the different Linux distributions.

For the MATLAB and Simulink interfaces, 32 or 64 bit MATLAB 2012b (or higher) is required.
Older versions might work but have not been tested. A MEX compatible C compiler is also
required. A list of compilers that are supported by MATLAB can be found in https://www.
mathworks.com/support/sysreq/previous_releases.html.

Run:

mex -setup

to configure your C compiler in MATLAB.

3.2.2 Keeping FORCESPRO up to date

FORCESPRO is actively developed and client modifications are frequent. Whenever your
client version is not synchronized with the server version, you will receive a code generation
error notifying you that your client is out of date.

To update your client simply type:

updateClient

on your MATLAB command prompt. updateClient without any arguments uses the default
embotech server to grab the client, and updates all corresponding client files. The command:

updateClient(URL)

overrides the default server selection and uses the server located at URL instead.

Alternatively, the FORCESPRO client may also be updated through Python, see Keeping
FORCESPRO up to date.

3.2.3 Installing and running older versions of FORCESPRO

Older versions of FORCESPRO can be installed and run by specifying the server URL as
https://forces-X-Y-Z.embotech.com, replacing X-Y-Z with the version numbers of a selected
FORCESPRO version vX.Y.Z. First, sync your client to the server by updating it with

22 Chapter 3. Installation

https://www.mathworks.com/support/sysreq/previous_releases.html
https://www.mathworks.com/support/sysreq/previous_releases.html

FORCESPRO User Manual

updateClient('https://forces-X-Y-Z.embotech.com')

Then, in order to generate a solver, set the code generation server as

codeoptions.server = 'https://forces-X-Y-Z.embotech.com';

3.3 Installation of the Python Client

• Quick Guide

– Windows (PowerShell)

– Linux Ubuntu

– Mac

• Requirements

– Python

– Python Packages

– Available Compiler

• Adding the FORCESPRO Python Client to your Python path

– Option A: Setting the PYTHONPATH environment variable

– Option B: Setting sys.path inside Python scripts

• Keeping FORCESPRO up to date

• Installing and running older versions of FORCESPRO

FORCESPRO offers a Python interface that enables user to formulate a optimization problem,
generating a solver for it through communication with the FORCESPRO server, and calling
the generated solver directly from Python. It is contained within the FORCESPRO client pack-
age together with the MATLAB Client, which can be obtained with a valid license as described
in Obtaining FORCESPRO.

3.3.1 Quick Guide

This section describes the most common commands needed to go from a blank system to
generating and executing the first solver for different operating systems. Before doing so,
you may want to double-check the section Requirements below, in particular with respect to
supported versions of Python and external packages.

In the following, we assume you have obtained the FORCESPRO client as described in Ob-
taining FORCESPRO, and unzipped its files into the directory /path/to/forces/pro on Unix plat-
forms or C:\path\to\forces\pro on Windows. The following installation instructions slightly dif-
fer for the operating systems supported, so please refer to the appropriate section.

Windows (PowerShell)

C:\PythonXY\Scripts\pip.exe install -r C:\path\to\forces\pro\requirements.txt
$env:PYTHONPATH="C:\path\to\forces\pro"

(continues on next page)

Chapter 3. Installation 23

FORCESPRO User Manual

(continued from previous page)

C:\PythonXY\python.exe C:\path\to\forces\pro\examples\Python\HighLevelInterface\
→˓RobotArmRTI\robot_sim.py

Linux Ubuntu

pip3 install -r /path/to/forces/pro/requirements.txt
sudo apt-get install gcc libomp-dev
export PYTHONPATH="/path/to/forces/pro":$PYTHONPATH
python3 /path/to/forces/pro/examples/Python/HighLevelInterface/RobotArmRTI/robot_sim.
→˓py

Mac

xcode-select --install
brew install python3 libomp
python3 -m pip install -r /path/to/forces/pro/requirements.txt
export PYTHONPATH="/path/to/forces/pro":$PYTHONPATH
python3 /path/to/forces/pro/examples/Python/HighLevelInterface/RobotArmRTI/robot_sim.
→˓py

This assumes you have the Homebrew package manager already installed. If not, run the
following before any of the above instructions:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/
→˓install.sh)"

3.3.2 Requirements

The Python client has been tested with the follwing configurations:

Python

A Python installation is required. Note that only compiled Python bytecode for the versions
listed below is currently shipped with the client:

• Python 2.7 (low-level convex problems only)

• Python 3.6

• Python 3.7

• Python 3.8

• Python 3.9

If you require a different version, please contact us at forces@embotech.com.

For purposes of readibility, for Windows, we will assume you have installed the respective
Python version into C:\PythonXY (where X is the major version number and Y the minor ver-
sion number) throughout the rest of this documentation. On Linux and Mac, we assume you
have Python 3 available in your PATH as python3, and Python 2.7 as python.

24 Chapter 3. Installation

FORCESPRO User Manual

Python Packages

For any Python version, the following packages from the Python package index (PyPI) must
be installed in the PYTHONPATH:

• numpy (Tested with version 1.18.3)

• scipy (Tested with version 1.4.1)

• casadi (Version 3.5.1 or 3.5.5 required; only for high-level interface)

• matplotlib (Required only for plotting in the example code)

• requests (Required for server connections)

All of these packages can be conveniently installed through the command-line by running
the following command from a terminal (Linux, Mac):

pip3 install -r /path/to/forces/pro/requirements.txt

Or, on Windows:

C:\PythonXX\Scripts\pip.exe install -r C:\path\to\forces\pro\requirements.txt

Note: The FORCESPRO client provides the option to connect to the code generation server
using WSDL instead of RestAPI. This adds the dependency to the suds-community package.
To install this through pip, the file requirementsWSDL.txt in the FORCESPRO client directory
can be used (pip install -r /path/to/forces/pro/requirementsWSDL.txt).

Available Compiler

Nonlinear symbolic problem formulations are translated into C code by the FORCES PRO
client. In order to generate solvers for these kinds of problems, a C compiler and linker must
thus be present on the host machine. The following compilers have been tested and are
supported by the FORCESPRO Python client:

• On Windows: Microsoft Visual Studio C Compiler 2019 and 2015 (Can be obtained by
downloading the Microsoft Visual Studio Community IDE)

• On Linux: GNU Compiler Collection (GCC), tested with version 9.3.0

• On Mac: Apple clang version 11.0.3 (Can be obtained by installing the XCode command-
line tools)

Additionally, on Linux, the following package must be installed if you wish to generate solvers
making use of parallel execution (options.parallel = True) or mixed-integer nonlinear problem
(MINLP) solvers:

sudo apt-get install libomp-dev

On Mac, for parallel solver generation and MINL-problems, the following package must be
installed through Homebrew:

brew install libomp

3.3.3 Adding the FORCESPRO Python Client to your Python path

Once the FORCESPRO client has been downloaded and the requirements have been in-
stalled as outlined above, you will need to tell the Python interpreter where to look for the

Chapter 3. Installation 25

FORCESPRO User Manual

forcespro and forcespro.nlp packages which implement the FORCESPRO client interface in
Python. Doing so will allow you to write import forcespro or import forcespro.nlp in your
scripts to import the FORCESPRO functionality. To make the FORCESPRO client available
this way, you have several options:

Option A: Setting the PYTHONPATH environment variable

Add the FORCESPRO client directory to your PYTHONPATH before calling any scripts that
require FORCESPRO from the command line. In a Windows PowerShell this is done by:

$env:PYTHONPATH="C:\path\to\forces\pro"

In Windows cmd.exe:

set PYTHONPATH=C:\path\to\forces\pro

On Unix (Linux and Mac):

export PYTHONPATH=/path/to/forces/pro

After doing so, you can call any script that requires FORCESPRO, and the script may include
import forcespo or import forcespro.nlp statements without needing to know where your
actual FORCESPRO client directory is.

Option B: Setting sys.path inside Python scripts

Add the FORCESPRO client directory to sys.path before importing:

import sys
sys.path.insert(0, '/path/to/forces/pro') # On Unix
sys.path.insert(0, 'C:\\path\\to\\forces\\pro') # On Windows, note the doubly-
→˓escaped backslashes
import forcespro
import forcespro.nlp

Note that this reduces the portability of any scripts using FORCESPRO, as it hard-codes the
location of FORCESPRO inside the script.

3.3.4 Keeping FORCESPRO up to date

In order to obtain the latest version of the FORCESPRO client, a Python script for automatic
upgrading is available.

In order to use it, navigate to the FORCESPRO client directory and execute the update-
Client.py script in Python.

$ cd /path/to/forces/pro
$ python updateClient.py

Alternatively, the FORCESPRO client can also be updated through MATLAB, see Keeping
FORCESPRO up to date.

26 Chapter 3. Installation

FORCESPRO User Manual

3.3.5 Installing and running older versions of FORCESPRO

Older versions of FORCESPRO can be installed and run by specifying the server URL as
https://forces-X-Y-Z.embotech.com, replacing X-Y-Z with the version numbers of a selected
FORCESPRO version vX.Y.Z. First, sync your client to the server by updating it with

python updateClient.py https://forces-X-Y-Z.embotech.com

Then, in order to generate a solver, set the code generation server as

codeoptions.server = 'https://forces-X-Y-Z.embotech.com'

Chapter 3. Installation 27

FORCESPRO User Manual

28 Chapter 3. Installation

FORCESPRO User Manual

Chapter 4

Backward Compatibility

• Determining Client Version

• Changes from Version 6.1.0

• Changes from Version 6.0.0

• Changes from Version 5.0.1

• Changes from Version 5.0.0

• Changes from Version 4.3.0

• Changes from Version 4.2.0

• Changes from Version 4.1.0

FORCESPRO uses continuous deployment as development policy, which may cause also mi-
nor new versions not to behave identical to previous ones. This chapter summarizes code-
generation options that either recently changed default behaviour or were introduced to al-
low restoring behaviour of a previous FORCESPRO version.

4.1 Determining Client Version

For determining the current version of your client, you may invoke the following command:

Matlab

Python

VER = FORCESversion();

not yet supported for Python client

The code-generation servers of FORCESPRO only remain available for a certain period of time
(but for at least one year after release, see Product Life Cycle). The date when the codegen
server of the current client version is planned to go offline can be retrieved as second output
argument of the same command:

Matlab

Python

[VER, OFFLINEDATE] = FORCESversion();

29

FORCESPRO User Manual

not yet supported for Python client

4.2 Changes from Version 6.1.0

From version 6.1.0, the default Matlab dump tool has been changed from legacy dumps
to symbolic dumps. In order to continue using the legacy dump tool, you need to ex-
plicitly specify ForcesDumpType.LegacyDumpGeneratedC as input argument to the functions
ForcesDumpProblem, ForcesDumpFormulation, ForcesDumpAll.

4.3 Changes from Version 6.0.0

From version 6.0.0, the C interface has changed. The <solvername>_solve function takes as
an additional argument the memory buffer containing all solver variables. In order to update
to version 6.0.0, you need to extend your C interface according to the following code snippet:

/* additional include required for memory buffer */
#include "<solvername>/include/<solvername>_memory.h"

/* opaque pointer to memory buffer */
<solvername>_mem * mem;
/* Get 0-th memory buffer */
mem = <solvername>_internal_mem(0);
/* call solve function */
exitflag = <solvername>_solve(¶ms, &output, &info, mem, NULL, extfunc_eval);

If you want full control over memory allocations, or if you require multiple memory buffers
(e.g. for running a solver in parallel), you can find more instructions in sections Main Targets
and C interface: memory allocations.

Alternatively, you can resort to the legacy C interface equivalent to prior FORCESPRO versions
by enabling the compatibility option

• codeoptions.legacy_interface = 1

From version 6.0.0, the external function evaluations signature has changed. The new name
of the function is <solvername>_adtool2forces (the function name is specific to the solver)
and it returns an integer value. The signature is shown below:

int <solvername>_adtool2forces (
double *x, /* primal vars */
double *y, /* eq. constraint multiplers */
double *l, /* ineq . constraint multipliers */
void *p, /* runtime parameters (passed as void pointer) */
double *f, /* objective function (incremented in this function) */
double *nabla_f , /* gradient of objective function */
double *c, /* dynamics */
double *nabla_c , /* Jacobian of the dynamics (column major) */
double *h, /* inequality constraints */
double *nabla_h , /* Jacobian of inequality constraints (column major) */
double *H, /* Hessian (column major) */
int stage, /* stage number (0 indexed) */
int iteration, /* Solver iteration count */
int threadID /* Thread id */

);

30 Chapter 4. Backward Compatibility

FORCESPRO User Manual

4.4 Changes from Version 5.0.1

From version 5.0.1, license options for FORCESPRO code generation are set in codeoptions.
license. Previous options:

• codeoptions.useFloatingLicense

• codeoptions.license_file_name

have now been replaced by:

• codeoptions.license.use_floating_license

• codeoptions.license.static_license_file_name

The old options are still available in 5.0.1 for backwards compatibility but the new options
override them when set.

4.5 Changes from Version 5.0.0

From version 5.0.0, FORCESPRO uses CasADi v3.5.5 as default AD tool for both Matlab and
Python client. The following code-generation option can be used for reverting to previous
FORCESPRO behaviour (since v4.3.0) using CasADi v3.5.1:

• codeoptions.nlp.ad_tool = 'casadi-3.5.1'

From version 5.0.0, FORCESPRO uses an improved implementation of the linear solver as de-
fault whenever nlp.linear_solver is set to 'symm_indefinite'. The following code-generation
option can be used for reverting to previous FORCESPRO behaviour:

• codeoptions.nlp.linear_solver = 'symm_indefinite_legacy'

From version 5.0.0, FORCESPRO uses RestAPI for server communications. To revert to previ-
ous communication methods, the following options can be used (see MATLAB network com-
munications/Python network communications):

Matlab

Python

codeoptions.server_connection = ForcesWeb.ServerConnections.WSDL
codeoptions.server_connection = ForcesWeb.ServerConnections.WSDL_legacy

codeoptions.server_connection = 'WSDL'

4.6 Changes from Version 4.3.0

From version 4.3.0, FORCESPRO uses CasADi v3.5.1 as default AD tool for both Matlab and
Python client. The following code-generation option can be used for reverting to previous
FORCESPRO behaviour using CasADi v2.4.2:

• codeoptions.nlp.ad_tool = 'casadi-2.4.2'

4.7 Changes from Version 4.2.0

From version 4.2.0, the following code-generation options can be used for reverting to pre-
vious FORCESPRO behaviours:

Chapter 4. Backward Compatibility 31

FORCESPRO User Manual

• codeoptions.legacyNetworkConnections = 1. From version 4.2.0, a new communication
method is used to connect to the codegen service for safety and stability reasons. Use
this option to use the legacy method of communication.

• codeoptions.platform = 'Speedgoat-Legacy-x86'. From version 4.2.0, use this option for
Mobile Speedgoat platforms on earlier versions of MATLAB (earlier than R2018b).

From version 4.2.0, the option codeoptions.platform = 'Speedgoat-x86' supports
MATLAB versions from R2018b till R2020a, while option codeoptions.platform =
'Speedgoat-QNX' supports MATLAB R2020b and later.

4.8 Changes from Version 4.1.0

From version 4.1.0, the following code-generation options can be used for reverting to pre-
vious FORCESPRO behaviours:

• codeoptions.separateCasadiFiles = 1. From version 4.1.0, the old _model files are all
gathered in a single _casadi file. Use this option to enable the old behaviour, i.e. splitted
model files.

• codeoptions.size_one_param_as_array = 1. From version 4.1.0, when using the PDIP_NLP
method only, all parameters of size one are treated as scalars by default in order to be
compatible with the Matlab coder. This option enables users to revert to the previous
behaviour, i.e. scalar parameters as arrays of size one.

32 Chapter 4. Backward Compatibility

FORCESPRO User Manual

Chapter 5

Y2F Interface

• Installing Y2F

• Generating a solver

• Calling the solver

• Solver info

– Exitflags

– Additional diagnostics

• Performance

• Examples

YALMIP is a high-level modeling language for optimization in MATLAB. It is very convenient
to use for modeling various optimization problems, including convex quadratic programs,
for example. YALMIP allows you to write self-documenting code that reads very much like a
mathematical description of the optimization model.

To combine the computational efficiency of FORCESPRO with the ease-of-use of YALMIP, we
have created the interface Y2F. Y2F very efficiently detects the inherent structure in the opti-
mization problem, and uses the FORCESPRO backend to generate efficient code for it. All you
need to do is to replace YALMIP’s optimizer function, which pre-builds the optimization prob-
lem such that subsequent evaluations become very inexpensive, by Y2F’s optimizerFORCES
function, which is fully API-compatible with optimizer.

This interface is provided with all variants of FORCESPRO, starting with Variant S.

You can read more about the concept of YALMIP’s optimizer here.

Important: The Y2F interface supports convex decision making problems, with or without
binary variables.

5.1 Installing Y2F

Y2F is included in the FORCESPRO client. If optimizerFORCES is not found on your MATLAB
path, you need to add the FORCES_PRO/Y2F/Y2F directory to it, e.g. by typing:

addpath /home/user/FORCES_PRO/Y2F/Y2F

33

https://yalmip.github.io/
https://github.com/embotech/y2f
https://yalmip.github.io/command/optimizer/

FORCESPRO User Manual

on your MATLAB command prompt.

Of course, you also need a working installation of YALMIP, which you can download from
https://yalmip.github.io/download/.

5.2 Generating a solver

A YALMIP model consists of a constraint object, which we name const and an objective func-
tion obj. You can create an optimizer object that has most of the work YALMIP needs to do
before calling a solver (called canonicalization) already saved. The only parts missing are the
parameters of the problem, which you can specify when calling optimizer:

P = optimizer(Con, Obj, Options, Parameters, WantedVariables); % YALMIP syntax

With Y2F, you can have the same syntax but creating a FORCESPRO solver:

P = optimizerFORCES(Con, Obj, Options, Parameters, WantedVariables, [ParameterNames],␣
→˓[OutputNames]);

where Options is a FORCESPRO codeoptions struct (see the Solver Options section for more
information). The two last arguments are optional cell arrays of strings specifying the names
of the parameters and the wanted variables. These will be used for naming e.g. the in- and
output ports of the generated Simulink block.

5.3 Calling the solver

There are several ways of calling the generated solver:

1. Using the optimizerFORCES object, which again is API compatible with YALMIP’s optimizer
object:

[wantedVariableValues, exitflag, info = P{Parameters}; % YALMIP syntax

2. Using the generated Matlab (MEX) interface (type help solvername at the Matlab command
prompt for more information):

problem.ParameterName1 = value1; problem.ParameterName2 = value2;
[output, exitflag, info] = solvername(problem);
wantedVariable = output.outputName1;

3. Via the generated Simulink block (see interfaces folder of the generated code).

5.4 Solver info

5.4.1 Exitflags

One should always check whether the solver has exited without an error before using the
solution. Possible values of exitflag are presented in Exitflag values.

34 Chapter 5. Y2F Interface

https://yalmip.github.io/download/

FORCESPRO User Manual

5.4.2 Additional diagnostics

The solver returns additional information to the optimizer in the info struct. Some of the
fields are described in Table 5.1. Depending on the method used, there will also be other
fields describing the quality of the returned result.

Table 5.1: Info values
Info Description
info.it Number of iterations. In branch-and-bound mode this is the number of

convex problems solved in total.
info.solvetime Total computation time in seconds.
info.pobj Value of the objective function.
info.it2opt (only branch-and-bound) Number of convex problems solved for finding

the optimal solution. Note that often the optimal solution is found early
in the search, but in order to certify (sub-)optimality, all branches have to
be explored.

5.5 Performance

A performance measurement for the interface when compared to other solvers called via
YALMIP and to the same problem formulated via the low-level interface of FORCESPRO (2
states, 1 input, box constraints, varying horizon) is presented in Figure 5.1. In this example, the
code generated directly from YALMIP is about 10 times faster than other solvers, and only a
factor 2 slower than the code generated with the low-level interface of FORCESPRO.

Figure 5.1: Performance comparison of the Y2F interface of FORCESPRO.

Chapter 5. Y2F Interface 35

FORCESPRO User Manual

5.6 Examples

• Y2F interface: Basic example: Learn how to formulate problems in YALMIP easily, and
then use the Y2F interface to generate code with FORCESPRO.

• Y2F interface: Trajectory Optimization for Quadrotor Flight: A more complex example
optimizing the trajectory of a quadrotor within safe flight corridors.

36 Chapter 5. Y2F Interface

FORCESPRO User Manual

Chapter 6

MathWorks Linear MPC Plugin

• Different types of solvers

• Different algorithms

• Generating a QP solver from an MPC object

• Solving a QP from MPC online data

• Using the FORCESPRO MPC Simulink block

• Deploy to dSpace MicroAutoBox II using the FORCESPRO MPC Simulink block

• Examples

As a result of a long-term collaboration, MathWorks Inc. and embotech AG developed a MAT-
LAB® plugin for FORCESPRO. Users are now able to use the FORCESPRO solver in MATLAB®
and Simulink® from within the MATLAB®Model Predictive Control Toolbox. The plugin lever-
ages the powerful design capabilities of the Model Predictive Control Toolbox™ and the com-
putational performance of FORCESPRO. With FORCESPRO 2.0, toolbox users can now easily
define challenging control problems and solve long-horizon MPC problems more efficiently.

Model Predictive Control Toolbox™ provides functions, an app, and Simulink® blocks for de-
signing and simulating model predictive controllers. The toolbox enables users to readily
specify plant and disturbance models, horizons, constraints, and weights. User-friendly con-
trol design capabilities of Model Predictive Control Toolbox™, combined with the powerful
numerical algorithms of FORCESPRO, enables code deployment of the FORCESPRO solver
on real-time hardware from within MATLAB® and Simulink®, in addition to the QP solvers
shipped by MathWorks. The new FORCESPRO interface comes with various features such as
Simulink blocks that can generate code runnable on embedded targets such as dSpace. The
parameters of the MPC algorithm, such as plant and disturbance model, prediction horizon,
constraints and move-blocking strategy can be specified directly. The toolbox enables users
to run closed-loop simulations and evaluation of controller performance. User-friendly MPC
design capabilities are combined with the powerful numerical algorithms of FORCESPRO.
This combination of the Model Predictive Control Toolbox™ and FORCESPRO enables code
deployment on real-time hardware. The generated code is highly optimized for fast compu-
tations and low memory footprint.

This interface is provided with all variants of FORCESPRO, starting with Variant S. It is com-
patible with MATLAB R2019b, 2020a and 2020b.

The plugin mainly consists of the three following MATLAB commands which are described
in details in this chapter:

• mpcToForces for generating a FORCESPRO solver from an MPC object designed by the
Model Predictive Control Toolbox

37

https://www.mathworks.com/products/mpc.html
https://www.mathworks.com/help/mpc/ref/mpcdesigner-app.html

FORCESPRO User Manual

• mpcmoveForces for calling the generated solver on a specific MPC problem instance

• mpcCustomSolver for using the FORCESPRO dense QP solver as a custom solver

An auxiliary file is also exposed to the users for generating different solvers options, namely
mpcToForcesOptions.

The following LTI MPC features are supported:

• Continuous and discrete time plant models

• Move blocking

• Measured disturbances

• Unmeasured disturbances

• Disturbance and noise models

• Uniform or time-varying weights on outputs, manipulated variables, manipulated vari-
ables rates and a global slack variable

• Uniform or time-varying bounds on outputs, manipulated variables and manipulated
variables rates

• Soft constraints

• Signal previewing on reference and measured disturbances

• Scale factors

• Nominal values

• Online updates of weights and constraints

• Built-in and custom state estimators

Currently, convex quadratic programs are supported by the MATLAB plugin. Extensions to
adaptive and linear time-varying are under development. The current limitations of the plu-
gin are the following:

• Mixed input-output constraints are not covered

• Offdiagonal terms on the hessian of the objective cannot be implemented

• Unconstrained problems are not supported

• No single-precision solvers, only double precision currently

• No suboptimal solutions

6.1 Different types of solvers

The plugin converts an MPC object (weights, bounds, horizons, prediction model) into a
quadratic program (QP) formulated via the FORCESPRO API. One key design decision is to
choose the decision variables in the quadratic program. There are two classic choices and
they lead to two different formulations:

• Dense QP, where only the manipulated variables 𝑀𝑉 or ∆𝑀𝑉 are decision variables. In
this case, the hessian and linear constraints matrices are stored as dense matrices.

• Sparse QP, where 𝑀𝑉 , ∆𝑀𝑉 , the outputs 𝑂𝑉 and the states 𝑋 are decision variables. In
this case, all matrices have a block sparse structure as in Low-level interface.

Typically, a dense QP has fewer optimization variables, zero equality constraints and many
inequality constraints. Although the sparse QP is generally much larger than the dense QP
its structure can be efficiently exploited to reduce the solve times. Besides, the dense formu-
lation has an inherent flaw, which is that the condition number increases with the horizon

38 Chapter 6. MathWorks Linear MPC Plugin

FORCESPRO User Manual

length, especially when the plant states have large contributions to the plant inputs and out-
puts. Thus, the best solution is to allow users to switch to the sparse formulation, which pre-
vents numerical blow-ups when the plant is unstable. Nevertheless, the dense formulation
can be beneficial in terms of solve time when there is an important amount of move-blocking.

6.2 Different algorithms

In addition to the general QP solver, the FORCESPRO plugin for the MPC toolbox supports
also supports a fast QP solver from FORCESPRO version 6.0.0. Both the general and the fast
algorithms are supported for the two different solver types documented in Different types of
solvers. The workflow for the general QP solver is exactly as described in the following sec-
tions. The difference in workflow for the fast QP solver is an additional “tuning” step which
will be explained here. The core idea behind this tuning step is that it allows for a highly spe-
cialized/tailored QP solver which achieves optimal performance for a given MPC application.
For this purpose FORCESPRO ships with a caching tool for collecting simulation data in order
to tune the fast QP solver. The caching tool is a simple mechanism and interacting with it
goes via three commands:

• forcesMpcCache clear: Deletes all stored caches completely.

• forcesMpCache on: Turns on the cache by constructing a cache object. This command
must be called before mpcToForces is called in order to properly cache simulation data.
After the cache has been turned on and until it is turned off every call to the generated
solver via mpcmoveForces will store a problem instance in the cache, so it can later be used
for tuning the fast QP solver.

• forcesMpcCache off: Stores the allocated cache in a folder named “FORCESPRO_CACHE”
and deletes the cache object from the base workspace.

• forcesMpcCache reset: A single command for running forcesMpcCache clear;
forcesMpcCache on.

When no cache has been stored (default) a general QP solver is generated when calling
mpcToForces. If on the other hand a cache is available when calling mpcToForces, then a fast
QP solver is generated. Hence, after constructing and specifying a MPC object mpcobj, the
complete workflow for generating a fast QP solver is as follows:

1. Turn on the FORCESPRO cache by running forcesMpcCache on (or forcesMpcCache reset)
in the MATLAB terminal.

2. Generate a general QP solver by calling mpcToForces(mpcobj,options) (see Generating a
QP solver from an MPC object).

3. Run a simulation, using mpcmoveForces to compute optimal control moves. It is important
that mpcmoveForces is called as opposed to the generated MEX function, as that one will
not be able to cache the problem instances which are needed for tuning the fast QP
solver.

4. Turn off the cache by running forcesMpcCache off in the MATLAB terminal.

5. Generate a QP fast solver by calling mpcToForces(mpcobj,options) (see Generating a QP
solver from an MPC object). Since the cache has been stored in step 4, this will trigger
the automatic tuning procedure.

For examples displaying the workflow for the fast QP solver, see the “forcesmpc_motor” and
“forcesmpc_cstr” examples shipped witht he FORCECPRO client.

Important: If the MATLAB command clear is called in between the calls forcesMpcCache on
and forcesMpcCache off the cache is deleted. Hence, this should be avoided.

Chapter 6. MathWorks Linear MPC Plugin 39

FORCESPRO User Manual

6.3 Generating a QP solver from an MPC object

Given an MPC object created by the mpc command, users can generate a QP solver tailored
to their specific problem via the following command:

% mpcobj is the output of mpc(...)
% options is the output of mpcToForcesOptions(...)

[coredata, statedata, onlinedata] = mpcToForces(mpcobj, options);

Two types of QP solvers can be generated via mpcToForces: a sparse solver that corresponds
to a multi-stage formulation as in Low-level interface and a dense solver that corresponds to
a one-stage QP with inequality constraints only.

The API of mpcToForces is described in more details in the tables below. The mpcToForces
command expects an MPC object mpcobj and a structure options generated by
mpcToForcesOptions as inputs.

Table 6.1: mpcToForces inputs
Input Description
mpcobj LTI MPC controller designed by Model Predictive Control Toolbox
options Object that provides solver generation options.

The outputs of mpcToForces consist of three structures coredata, statedata and onlinedata.
The FORCESPRO server generates two types of solvers:

• customForcesSparseQP when the option 'sparse' is set. An m file named custom-
ForcesSparseQP.m with the corresponding mex interface as well as the solver libraries
and header in the customForcesSparseQP folder. In this particular case (sparse), the
name of the solver can be set by users.

• customForcesDenseQP when the option 'dense' is set. An m file named customForces-
DenseQP.m with the corresponding mex interface as well as the solver libraries and
header in the customForcesDenseQP folder. In this particular case (dense), the solver
name cannot be changed by users.

40 Chapter 6. MathWorks Linear MPC Plugin

FORCESPRO User Manual

Table 6.2: mpcToForces outputs
Output Type Description
coredata Structure Stores constant Store constant data needed to construct

quadratic progam at run-time
statedata Structure Represents prediction model states and last optimal MV.

The index 𝑘 stands for the current simulation time.
It contains 4 fields:
When built-in state estimation is used:
Plant is the estimated plant state 𝑥𝑝[𝑘|𝑘 − 1]
Disturbance is the estimated disturbance states 𝑥𝑑[𝑘|𝑘 − 1]
Noise is the estimated measurement noise states 𝑥𝑛[𝑘|𝑘−1]
LastMove is the optimal manipulated variables at the previ-
ous sample time
In this case, users should not manually change any field at
run-time.
When custom state estimation is used:
Plant is the estimated plant state 𝑥𝑝[𝑘|𝑘]
Disturbance is the estimated disturbance states 𝑥𝑑[𝑘|𝑘]
Noise is the estimated noise states 𝑥𝑛[𝑘|𝑘]
LastMove is the optimal manipulated variables at the previ-
ous solve
In this case, user should manually update Plant, Distur-
bance (if used), Noise (if used) fields at run-time but leave
LastMove alone.

onlinedata Structure Represent online signals
It contains up to three fields:
signals, a structure containing following fields:
ref (references of Output Variables)
mvTarget (references of Manipulated Variables)
md (when Measured Disturbance is present)
ym (when using the built-in estimator)
externalMV (when UseExternalMV is true in the options ob-
ject)
weights, a structure containing the following fields:
y (when UseOnlineWeightOV is enabled)
u (when UseOnlineWeightMV is enabled)
du (when UseOnlineWeightMVRate is enabled)
ecr (when UseOnlineWeightECR is enabled)
constraints, a structure containing the following fields:
vmin (when UseOnlineConstraintOVMin is enabled)
vmax (when UseOnlineConstraintOVMax is enabled)
umin (when UseOnlineConstraintMVMin)
umax (when UseOnlineConstraintMVMax)
dumin (when UseOnlineConstraintMVRateMin)
dumax (when UseOnlineConstraintMVRateMax)

In order to provide the code-generation options to mpcToForces, the user needs to run the
command mpcToForcesOptions with one of the following two arguments as input:

• “dense” for generating the options of a one-stage dense QP solvers

• “sparse” for generating the options a multi-stage QP solver.

The structures provided by the mpcToForcesOptions command have the following MPC related
fields in common between the “dense” and “sparse” case:

• SkipSolverGeneration. When set to True, only structures are returned. If set to False, a
solver mex interface is generated and the structures are returned. Default value is False.

Chapter 6. MathWorks Linear MPC Plugin 41

FORCESPRO User Manual

• UseOnlineWeightOV. When set to True, it allows Output Variables weights to vary at run
time. Default is False.

• UseOnlineWeightMV. When set to True, it allows Manipulated Variables weights to vary
at run time. Default is False.

• UseOnlineWeightMVRate. When set to True, it allows weights on the Manipulated Vari-
ables rates to vary at run time. Default is False.

• UseOnlineWeightECR. When set to True, it allows weights on the ECR to change at run
time. Default is False.

• UseOnlineConstraintOVMax. When set to True, it allows updating the upper bounds on
Output Variables at run time. Default is False.

• UseOnlineConstraintOVMin. When set to True, it allows updating the lower bounds on
Output Variables at run time. Default is False.

• UseOnlineConstraintMVMax. When set to True, it allows updating the upper bounds on
Manipulated Variables at run time. Default is False.

• UseOnlineConstraintMVMin. When set to True, it allows updating the lower bounds on
Manipulated Variables at run time. Default is False.

• UseExternalMV. When set to True, the actual Manipulated Variable applied to the plant
at time 𝑘 − 1 is provided as output. Default is False.

• UseMVTarget. When set to True, an MV reference signal is provided via the onlinedata
structure. In this case, MV weights should be positive for proper tracking. When false,
the MV reference is the nominal value by default and MV weights should be zero to avoid
unexpected behaviour. Default is False.

Both the “dense” and “sparse” options structures have the following solver related fields in
common:

• ForcesServer is the FORCESPRO server url. Default is forces.embotech.com.

• ForcesMaxIteration is the maximum number of iterations in a FORCESPRO solver. De-
fault value is 50.

• ForcesPrintLevel is the logging level of the FORCESPRO solver. If equal to 0, there is no
output. If equal to 1, a summary line is printed after each solve. If equal to 2, a summary
line is printed at every iteration. Default value is 0.

• ForcesInitMethod is the initialization strategy used for the FORCESPRO interior point al-
gorithm. If equal to 0, the solver is cold-started. If equal to 1, a centered start is computed.
Default value is 1.

• ForcesMu0 is the initial barrier parameter. It must be finite and positive. Its default value
is equal to 10. A small value close to 0.1 generally leads to faster convergence but may be
less reliable.

• ForcesTolerance is the tolerance on the infinity norm of the residuals of the inequality
constraints. It must be positive and finite. Its default value is 10−6.

• ForcesTargetPlatform for choosing a target platform to deploy the solver. Currently,
dSpace, Speedgoat, BeagleBone-Blue and AURIX are supported.

In the “sparse” solver case, there are four more fields:

• SolverName for customuzing the solver name.

• UseOnlineConstraintMVRateMax for setting MVRate upper bounds.

• UseOnlineConstraintMVRateMin for setting MVRate lower bounds.

• UseOneSlackVariablePerStep to enable one slack variable per prediction step.

42 Chapter 6. MathWorks Linear MPC Plugin

https://forces.embotech.com

FORCESPRO User Manual

6.4 Solving a QP from MPC online data

Once a QP solver has been generated it can be used to solve online MPC problems via the
MATLAB command mpcmoveForces as follows

% the coredata, statedata and onlinedata structures are outputs of␣
→˓mpcToForces

[mv,statedata,info] = mpcmoveForces(coredata,statedata,onlinedata);

The outputs of the mpcmoveForces command are described below. In the table below 𝑛𝑚
denotes the number of manipulated variables, 𝑛𝑥 stands for the state dimension of the sys-
tem implemented in the MPC object, 𝑝 is the prediction horizon and 𝑘 is the current solve
time instant.

Table 6.3: mpcmoveForces outputs
Output Type Description
mv Vector of size nm Optimal manipulated variables at current solve time

instant
statedata Structure Initialized by mpcToForces
info Structure Information about the FORCESPRO solve

Uopt is a 𝑝×𝑛𝑚 matrix for the optimal manipulated vari-
ables over the prediction horizon 𝑘 to 𝑘 + 𝑝− 1
Yopt is a 𝑝× 𝑛𝑦 matrix for the optimal output variables
over the prediction horizon 𝑘 + 1 to 𝑘 + 𝑝
Xopt is a 𝑝 × 𝑛𝑥 matrix for the optimal state variables
over the prediction horizon 𝑘 + 1 to 𝑘 + 𝑝
Slack is a 𝑝× 1 vector of slack variables
Exitflag is the FORCESPRO solve exit flag. If it is equal
to 1, an optimal solution has been found. If it is equal to
0, the maximum number of solver iterations has been
reached. A negative flag means that the solver failed
to find a feasible solution.
Iterations is the number of solver iterations upon
convergence or failure
Cost is the cost returned by the solver

6.5 Using the FORCESPRO MPC Simulink block

Both the FORCESPRO sparse and dense solvers can be used inside Simulink. The dense QP
formulation is usable from the shipped Simulink MPC controller block directly. For this, the
following steps are needed:

• Generate a custom dense FORCESPRO solver

options = mpcToForcesOptions('dense');
mpcToForces(mpcobj, options);

• Set the following settings in the MPC object

mpcobj.Optimizer.CustomSolver = true;
mpcobj.Optimizer.CustomSolverCodeGen = true;

The FORCESPRO sparse QP solver is also available via the Model Predictive Control Toolbox
in Simulink. A dedicated block has been implemented for this purpose. All features of the
MATLAB plugin are available through this Simulink block, namely measured disturbances,

Chapter 6. MathWorks Linear MPC Plugin 43

FORCESPRO User Manual

external manipulated variables, references for manipulated variables, custom state estima-
tion as well as online weights and constraints. Configuring the block is done via the user
interface shown in Figure 6.1 below. Currently only the sparse QP solver can be used via the
Simulink API.

Figure 6.1: FORCESPRO MPC block configuration window

In order to run a simulation using the FORCESPRO Simulink block, a solver first needs to be
generated via the following code for instance:

%% Generate FORCESPRO sparse QP solver
options = mpcToForcesOptions('sparse');
% For this example we need to specify that online weights on the outputs,
% the input rates and the ECR slacks are used
options.UseOnlineWeightOV = true;
options.UseOnlineWeightMVRate = true;
options.UseOnlineWeightECR = true;
[coredata, statedata, onlinedata] = mpcToForces(mpcobj, options);

The structures coredata and statedata needed by the FORCESPRO solver are then provided
to the Simulink block via the window shown in Figure 6.1.

• coredata is the variable name of the core data structure generated by mpcToForces in
the base workspace.

44 Chapter 6. MathWorks Linear MPC Plugin

FORCESPRO User Manual

• initial state data is the variable name of the state data structure generated by mpcTo-
Forces in the base workspace. The user is expected to populate this structure with initial
states of the plant and disturbances.

• md checkbox should be selected if MD channels exist in the MPC object.

• x[k|k] checkbox needs to be selected for using a custom state estimator.

• Optional outputs provide more information. It is recommended to monitor the
qp.status port to check whether the MPC block produces a feasible solution.

The integration of the FORCESPRO MPC block in a Simulink model is shown in Figure 6.2
below.

Figure 6.2: Simulink model illustrating the integration of the FORCESPRO MPC block

The Simulink model can be run either by clicking on the Run button in Simulink or from MAT-
LAB using the sim command.

% Start simulation.
mdl = 'forcesmpc_onlinetuning';
open_system(mdl); % Open Simulink(R) Model
sim(mdl); % Start Simulation

Finally, the FORCESPRO MPC block is available via the Library browser once the user has
updated his client to the latest version of FORCES, as shown in Figure 6.3 below.

Figure 6.3: FORCESPRO MPC block in the library browser

Chapter 6. MathWorks Linear MPC Plugin 45

FORCESPRO User Manual

6.6 Deploy to dSpace MicroAutoBox II using the FORCE-
SPRO MPC Simulink block

The FORCESPRO sparse solvers can be used inside Simulink to deploy to dSpace MicroAuto-
Box II. All features of the MATLAB plugin are available through this Simulink block, namely
measured disturbances, external manipulated variables, references for manipulated vari-
ables, custom state estimation as well as online weights and constraints. Configuring the
block is done via the user interface shown in Figure 6.4 below.

Figure 6.4: FORCESPRO MPC block configuration

1) In order to run an MPC simulation in dSPACE using the FORCESPRO block, a solver first
needs to be generated via the following code:

%% Generate FORCESPRO sparse QP solver
options = mpcToForcesOptions('sparse');
% For this example we need to specify that online weights on the outputs,
% the input rates and the ECR slacks are used

(continues on next page)

46 Chapter 6. MathWorks Linear MPC Plugin

FORCESPRO User Manual

(continued from previous page)

options.UseOnlineWeightOV = true;
options.UseOnlineWeightMVRate = true;
options.UseOnlineWeightECR = true;
options.ForcesTargetPlatform = 'dSPACE-MABII';

[coredata, statedata, onlinedata] = mpcToForces(mpcobj, options);

2) Note that the option ForcesTargetPlatform needs to be specified. The structures core-
data and statedata needed by the FORCESPRO solver are then provided to the Simulink
block via the window shown in Figure 6.4. The integration of the FORCESPRO MPC block
in a Simulink model is shown in Figure 6.5 below.

Figure 6.5: FORCESPRO MPC block integration in a Simulink model

3) When creating the Simulink Model, in the Configurations, in the “Code Generation” tab,
set the options (see Figure 6.6 below):

• System target file: rti1401.tlc

• Language: C

• Generate makefile: On

• Template makefile: rti1401.tmf

• Make command: make_rti

4) The Simulink model can be used for Code Generation from MATLAB in the usual way.

% Start Code Generation.
mdl = 'forcesmpc_onlinetuning_dSpace_MicroAutoBoxII';
open_system(mdl); % Open Simulink(R) Model
load_system(mdl); % Load Simulink(R) Model
rtwbuild(mdl); % Start Code Generation

5) After code generation the dspace compiler (Microtec PowerPC) generated files to use to
run your model on the MicroAutoBox II (see Figure 6.7).

6) Open dSpace Control Desk and select create new project (see Figure 6.8).

7) Name the project and the experiment (see Figure 6.9 and Figure 6.10).

8) Select the platform to which you will deploy the generated executable (see Figure 6.11).

9) Import the variable description file forcesmpc_onlinetuning_dSpace_MicroAutoBoxII.sdf
in order to have access to the model variables and see the results of the execution (see
Figure 6.12 and Figure 6.13).

10) Click Finish to create the project (see Figure 6.14).

Chapter 6. MathWorks Linear MPC Plugin 47

FORCESPRO User Manual

Figure 6.6: Configure Code Generation for dSPACE MicroAutoBox II

11) On the project layout select the tab Variables and on the
forcesmpc_onlinetuning_dSpace_MicroAutoBoxII category expand Model Root (see
Figure 6.15).

12) Select FORCES MPC (Sparse QP) and Drag & Drop all the output variables together to the
Layout. In the opened menu select Time Plotter (see Figure 6.16).

13) Drag & Drop the output variables again and now choose Display (see Figure 6.17).

14) To see all the plots concurrently right-click on the left of the Y-axis and select YAxes-view>
Horizontal stacked (see Figure 6.18).

15) Select the Platforms/Devices tab. Right-Click on your platform
and select Real-Time Application> Load. Choose the executable file
forcesmpc_onlinetuning_dSpace_MicroAutoBoxII.ppc (see Figure 6.19 and Figure 6.20).

16) Select Go Online and Start Measuring to see the results. (see Figure 6.21 and Figure 6.22).

6.7 Examples

The plugin comes with several examples to demonstrate its functionalities and flexibility.

You can find the MATLAB code of this example to try them out for yourself in the examples/
Matlab/mpc-toolbox-plugin/linearModels folder that comes with your client.

The packaged examples are the following ones:

• forcesmpc_cstr.m is a linear time-invariant (LTI) MPC example with unmeasured outputs.
It also shows how to use the MATLAB Coder for generating and running mpcmove-
Forces as a mex interface, which results in lower simulation times.

48 Chapter 6. MathWorks Linear MPC Plugin

FORCESPRO User Manual

Figure 6.7: The generated files from the Simulink Code Generation

Chapter 6. MathWorks Linear MPC Plugin 49

FORCESPRO User Manual

Figure 6.8: Start a new project

Figure 6.9: Name your project

50 Chapter 6. MathWorks Linear MPC Plugin

FORCESPRO User Manual

Figure 6.10: Name your experiment

Figure 6.11: Select the MicroAutoBox platform

Chapter 6. MathWorks Linear MPC Plugin 51

FORCESPRO User Manual

Figure 6.12: Import the variable description file

Figure 6.13: Select the sdf file with the variables description

52 Chapter 6. MathWorks Linear MPC Plugin

FORCESPRO User Manual

Figure 6.14: Click Finish to create the project

Figure 6.15: Find the model root in the variables tab

Chapter 6. MathWorks Linear MPC Plugin 53

FORCESPRO User Manual

Figure 6.16: Add the variables as plots

Figure 6.17: Add the variables as displays

54 Chapter 6. MathWorks Linear MPC Plugin

FORCESPRO User Manual

Figure 6.18: Select to show all the signals on the same plot with their own Y-axes

Figure 6.19: Load the application on the dSPACE MicroAutoBox II

Figure 6.20: Select the executable to run the experiment

Chapter 6. MathWorks Linear MPC Plugin 55

FORCESPRO User Manual

Figure 6.21: Buttons Go Online and Start Measuring to receive execution results

Figure 6.22: Plots and results from experiment on dSPACE MicroAutoBox II

• forcesmpc_targets.m is an LTI MPC example with a reference on one manipulated vari-
ables

• forcesmpc_preview.m is an LTI MPC example with previewing on the output reference
and the measured disturbance

• forcesmpc_motor.m is an LTI MPC example with state and input constraints

• forcesmpc_miso.m is an LTI MPC example with one measured output, one manipulated
variable, one measured disturbance, and one unmeasured disturbance

• forcesmpc_simplelti.m demonstrates a simple LTI MPC designed

• forcesmpc_linearize.m is an example of linear MPC around an operating point of a non-
linear system.

• forcesmpc_customqp.m shows how to use the FORCESPRO dense QP solver as a custom
solver in an MPC object

• forcesmpc_onlinetuning.zip demonstrates how to run the MPC Simulink block.

• forcesmpc_onlinetuning_dSpace_MicroAutoBoxII.zip demonstrates how to generate
code for dSpace MicroAutoBox II using the MPC Simulink block.

The forcesmpc_linearize.m example is described in more details below. First, the linearized
model and the operating point are loaded from a MAT file.

%% Load plant model linearized at its nominal operating point (x0, u0, y0)
load('nomConditionsLinearize.mat');

An MPC controller object is then created with a prediction horizon of length 𝑝 = 20, a control
horizon 𝑚 = 3 and a sampling period 𝑇𝑠 = 0.1 seconds as explained here.

56 Chapter 6. MathWorks Linear MPC Plugin

https://www.mathworks.com/help/mpc/ug/choosing-sample-time-and-horizons.html

FORCESPRO User Manual

%% Design MPC Controller
% Create an MPC controller object with a specified sample time |Ts|,
% prediction horizon |p|, and control horizon |m|.
Ts = 0.1;
p = 20;
m = 3;
mpcobj = mpc(plant,Ts,p,m);

Nominal values need to be set in the MPC object.

% Set the nominal values in the controller.
mpcobj.Model.Nominal = struct('X',x0,'U',u0,'Y',y0);

Constraints are set on the manipulated variables and an output reference signal is provided.

% Set the manipulated variable constraint.
mpcobj.MV.Max = 0.2;

% Specify the reference value for the output signal.
r0 = 1.5*y0;

From the MPC object and a structure of options, a FORCESPRO solver can be generated.

% Create options structure for the FORCESPRO sparse QP solver
options = mpcToForcesOptions();
% Generates the FORCESPRO QP solver
[coredata, statedata, onlinedata] = mpcToForces(mpcobj, options);

Once a reference signal has been constructed, the simulation can be run using mpcmoveForces.

for t = 1:Tf
% A measurement noise is simulated
Y(:, t) = dPlant.C * (X(:, t) - x0) + dPlant.D * (U(:, t) - u0) + y0 + 0.

→˓01 * randn;
% Prepare inputs of mpcmoveForces
onlinedata.signals.ref = r(t:min(t+mpcobj.PredictionHorizon-1,Tf),:);
onlinedata.signals.ym = Y(:, t);
% Call FORCESPRO solver
[mv, statedata, info] = mpcmoveForces(coredata, statedata, onlinedata);
if info.ExitFlag < 0
warning('Internal problem in FORCESPRO solver');

end
U(:, t) = mv;
X(:, t+1) = dPlant.A * (X(:, t) - x0) + dPlant.B * (U(:, t) - u0) + x0;

end

The resulting input and output signals are shown in Figure Figure 6.23 and Figure Figure 6.24
respectively.

Chapter 6. MathWorks Linear MPC Plugin 57

FORCESPRO User Manual

Figure 6.23: Manipulated variable computed by the FORCESPRO plugin.

Figure 6.24: Output variable computed by the FORCESPRO plugin.

58 Chapter 6. MathWorks Linear MPC Plugin

FORCESPRO User Manual

Chapter 7

MathWorks Nonlinear MPC Plugin

• Introduction

• The SQP Fast algorithm for nlmpc

• Defining a nonlinear model

• Generating an NLP solver

– Using an “nlmpc” object

– Using an “nlmpcMultistage” object

• Simulation in MATLAB and Simulink

• Code generation in MATLAB and Simulink

• Examples

– Controlling a CSTR reactor

– Lane following example

– Rocket landing example

7.1 Introduction

As a result of a long-term collaboration, MathWorks Inc. and embotech AG have extended the
Model Predictive Control Toolbox™with a plugin for the FORCESPRO nonlinear solvers. Users
are now able to use the FORCESPRO nonlinear interior-point (IP) and sequential quadratic
programming (SQP) solvers in MATLAB® and Simulink® from within the MATLAB® Model
Predictive Control Toolbox within the nonlinear MPC API. This plugin leverages the power-
ful design capabilities of the Model Predictive Control Toolbox™ and the computational per-
formance of FORCESPRO. FORCESPRO extends the Model Predictive Control Toolbox with
code-generated IP and SQP solvers that are not based on finite-difference derivatives compu-
tation, resulting in faster convergence. Thanks to FORCESPRO, the nonlinear API now comes
with two classes of nonlinear solvers compatible with code generation that can be deployed
to various real-time targets.

Generating a FORCESPRO solver through the Model Predictive Control Toolbox plugin is
done by first generating either a nlmpcMultistage object (see here) or a nlmpc object (see
here). The nlmpcMultistage formulation of a nonlinear MPC problem offers maximum flex-
ibility and customizability while also ensures optimal performance. Meanwhile, the nlmpc
formulation of a nonlinear MPC problem is very easy and requires a minimal amount of cod-
ing to get started. The different aspects of generating these different objects will be covered

59

https://www.mathworks.com/products/mpc.html
https://www.mathworks.com/products/mpc.html
https://www.mathworks.com/products/model-predictive-control.html#nonlinear-controllers
https://www.mathworks.com/help/mpc/ref/nlmpcmultistage.html
https://www.mathworks.com/help/mpc/ref/nlmpc.html

FORCESPRO User Manual

in details below.

Depending on the object chosen, the FORCESPRO nonlinear MPC plugin consists of two API
methods:

• nlmpc

– nlmpcToForces generates a FORCESPRO nonlinear solver from a nonlinear MPC
(nlmpc) object designed by the Model Predictive Control Toolbox

– nlmpcmoveForces calls the generated solver to calculate optimal control actions

• nlmpcMultistage

– nlmpcMultistageToForces generates a FORCESPRO nonlinear solver from a nonlin-
ear MPC multistage (nlmpcMultistage) object designed by the Model Predictive Con-
trol Toolbox

– nlmpcmoveForcesMultistage calls the generated solver to calculate optimal control
actions

The nonlinear plugin also comes with Simulink® libraries that enable users to run the FORCE-
SPRO solvers from within their Simulink® models. The generation of FORCESPRO nonlinear
solvers from nlmpc objects is supported from MATLAB R2020a while generation from nlm-
pcMultistage objects is supported from MATLAB R2021a.

This interface is provided with Variant L and partially with Variant M of FORCESPRO.

Important: Note that when generating a FORCESPRO solver using a nlmpcMultistage object
there is the following caveat concerning declaration of model functions: For any stage cost,
equality and inequality constraint function, if it is defined differently than any other stage, it
must be specified in a separate MATLAB function. In other words, do not define different cost
and constraint terms in a single function using a switch yard based on stage number. Instead,
use different functions, one for each unique definition.

For example, do not use a single cost function and assign it to every stage like showed in the
following code-snippet:

% THIS WILL NOT WORK CORRECTLY!
function cost = LaneFollowingCostFcn(stage,x,u,dmv,para)
Wx = [0; 0; 0.05; 0; 3; 0];
Wdmv = [0.1; 0.2];
ref = [0; 0; para(2); 0; 0; 0];
p = para(1)
if stage==1
cost = (Wdmv.*dmv)'*(Wdmv.*dmv);
elseif stage==(p+1)
cost = (Wx.*(x-ref))'*(Wx.*(x-ref));

else
cost = (Wx.*(x-ref))'*(Wx.*(x-ref)) + (Wdmv.*dmv)'*(Wdmv.*dmv);

end

Instead, split it into three functions and assign them to 1, 2 to 𝑝 and 𝑝+ 1 respectively.

7.2 The SQP Fast algorithm for nlmpc

From FORCESPRO version 6.0.0, in addition to the previously supported interior point and
general SQP algorithms, a new SQP Fast algorithm was added. The workflow for the SQP Fast
algorithm is slightly different from the workflow required to generate solvers using the other
algorithms. The main difference is that generating a SQP Fast solver required a tuning step.

60 Chapter 7. MathWorks Nonlinear MPC Plugin

FORCESPRO User Manual

The core idea behind this is that it allows for a highly specialized/tailored SQP algorithm which
achieves optimal performance for a given MPC application. For this purpose FORCESPRO
ships a caching tool for collecting simulation data in order to tune the SQP Fast solver. The
generation of a SQP Fast solver is controlled via the caching tool. The caching tool is a simple
mechanism and interacting with it goes via three commands:

• forcesMpcCache clear: Deletes all stored caches completely.

• forcesMpCache on: Turns on the cache by constructing a cache object. This command
must be called before nlmpcToForces is called in order to properly cache simulation data.
From when the cache is turned on until it is turned off, every call to the generated solver
via nlmpcmoveForces will store a problem instance in the cache, so it can later be used for
tuning the SQP Fast solver.

• forcesMpcCache off: Stores the allocated cache in a folder named “FORCESPRO_CACHE”
and deletes the cache object from the base workspace.

• forcesMpcCache reset: Equivalent to forcesMpcCache clear; forcesMpcCache on.

When no cache has been stored (default) a SQP General solver is generated when calling
nlmpcToForces. If on the other hand a cache is available when calling nlmpcToForces, then a
SQP Fast solver is generated. Hence, after constructing and specifying an NLMPC object
nlmpcobj, the complete workflow for generating a SQP Fast solver is as follows:

1. Turn on the FORCESPRO cache by running forcesMpcCache on (or forcesMpcCache reset)
in the MATLAB terminal.

2. Generate a SQP General solver by calling nlmpcToForces(nlmpcobj,options)with options.
SolverType = 'SQP' (see Using an “nlmpc” object).

3. Run a simulation, using nlmpcmoveForces to compute optimal control moves. It is impor-
tant that nlmpcmoveForces is used as oposed to the generated MEX file, which is not able
to cache the problem data for tuning the fast SQP solver.

4. Turn off the cache by running forcesMpcCache off in the MATLAB terminal.

5. Generate a QP fast solver by calling nlmpcToForces(nlmpcobj,options) (see Using an
“nlmpc” object). Since the cache has been stored in step 4, a SQP Fast solver will be
generated and the automatic tuning procedure will be triggered.

See an example here where the full workflow is described in full detail.

Important: If the MATLAB command clear is called in between the calls forcesMpcCache on
and forcesMpcCache off the cache is deleted. Hence, this should be avoided.

Important: The SQP Fast solver is currently only supported when generating a solver using
a nlmpc object (see Using an “nlmpc” object).

7.3 Defining a nonlinear model

In order to call the FORCESPRO code generation, both a nlmpc object as well as a
nlmpcMultistage object need to be built from a Model. The process is essentially the same
as the one described here. However one should note that the FORCESPRO code genera-
tion ignores the jacobian functions that may be provided in Jacobian.StateFcn and Jaco-
bian.OutputFcn, since these will be automatically generated by the automatic differentia-
tion tool CasADi. Moreover, the following requirements on the fields Model.StateFcn and
Model.OutputFcn need to be fulfilled for the plugin to work seamlessly:

• they must be the name of a function file, not an anonymous functions

Chapter 7. MathWorks Nonlinear MPC Plugin 61

https://www.mathworks.com/help/mpc/ug/specify-prediction-model-for-nonlinear-mpc.html
https://web.casadi.org/

FORCESPRO User Manual

• they must be compatible with MATLAB code generation

• they must follow CasADi coding conventions. Most importantly, the state
derivative dxdt has to be built explicitly, as shown below.

dxdt = [expression; expression; ...]

As a word of caution, the following code snippet will result in an undesired behaviour from
CasADI.

dxdt = x; % Do not write this, CasADI takes it as reference !
dxdt(1,1) = a1*x(1) + a2*x(2) + b1*u(2);
dxdt(2,1) = a3*x(1) + a4*x(2) + b2*u(2);
dxdt(3,1) = x(2)*x(1) + x(4);
dxdt(4,1) = (1/tau)*(-x(4) + u(1));
dxdt(5,1) = x(1) + x(3)*x(6);
dxdt(6,1) = x(2) - 0*x(3);

FORCESPRO calls the model functions from its own objects, which follow an assigment by
reference convention, hence the assignement dxdt = x is made by reference. This implies that
updating dxdt also changes x, which builds the wrong symbolic dynamics.

For nlmpc objects, if the model contains a parameter, it must be a single vector parameter. In
other words, users need to set nlobj.Model.NumberOfParameters = 1 and at run-time write
onlinedata.Parameter = value where value is a column vector.

7.4 Generating an NLP solver

7.4.1 Using an “nlmpc” object

When generating a FORCESPRO solver using an nlmpc object, the main difference compared
to the existing nonlinear MPC from The MathWorks based on the fmincon solver from the Op-
timization Toolbox is a code generation step that takes the nonlinear MPC object as argu-
ment. This is needed in order to build a mex interface for a FORCESPRO nonlinear solver that
is customized to the model provided by the user.

Given an NLMPC object created by the nlmpc command, users can generate an IP or SQP
nonlinear solver tailored to their specific problem via the following command:

% nlobj is the output of nlmpc(...)
% options is the output of nlmpcToForcesOptions(...)

[coredata, onlinedata] = nlmpcToForces(nlobj, options);

Two types of nonlinear solvers can be generated via nlmpcToForces: a nonlinear interior-point
solver and a sequential quadratic programming solver whose features are covered in details
in Sequential quadratic programming algorithm.

The nlmpcToForces API is described in more details in the tables below. The nlmpcToForces
command expects an NLMPC object nlobj and a structure options as arguments. It also has
a few limitations as it currently does not support custom cost and constraints. Instead one
should in this case use an nlmpcMultistage object to represent custom cost and constraints.
It also requires double precision.

Table 7.1: nlmpcToForces arguments
Input Description
nlobj NMPC object constructed by Model Predictive Control Toolbox (see here)
options Object that provides solver generation options.

62 Chapter 7. MathWorks Nonlinear MPC Plugin

https://www.mathworks.com/help/mpc/ug/specify-prediction-model-for-nonlinear-mpc.html

FORCESPRO User Manual

The outputs of nlmpcToForces consist of two structures coredata, a structure containing the
constant NLMPC information used by nlmpcmoveForces and onlinedata, a structure that
allows you to specify online signals such as x, lastMV, ref, MVTarget, md as well as weights or
bounds used by nlmpcmoveForces.

In order to provide the solver options to nlmpcToForces, the user needs to run the command
nlmpcToForcesOptions. The options structure contains the following fields:

• SolverName. This is the solver name used by MEX and C files. Its default value is
myForcesNLPSolver.

• SolverType. This option specifies which FORCESPRO nonlinear programming solver to
use. Its default value is InteriorPoint. To use the FORCESPRO SQP algorithm set the
value to SQP.

• SkipSolverGeneration. This option indicates whether nlmpcToForces should generate the
custom NLP solver. When true, nlmpcToForces will return structures without regenerat-
ing the MEX and C files. Its default value is false.

• Server. This option specifies the FORCESPRO server address for remote solver genera-
tion. Its default value is https://forces.embotech.com.

• PrintLevel. This option specifies the amount of information displayed in the solver log.

• ForcesTargetPlatform for choosing a target platform to deploy the solver. Currently,
dSpace, Speedgoat, BeagleBone-Blue and AURIX are supported.

– 0: no output will be written

– 1: summary line of each solve

– 2: summary line of each iteration

Its default value is 0.

• IntegrationMethod. This option specifies the choice of integration scheme. I.e. the way
in which the continuous dynamics are discretized. This field is only available from MAT-
LAB R2021a onwards. The different integration schemes are

– "IRK2": Implicit Runge Kutta method of order 2

– "RK4": Explicit Runge Kutta method of order 4

Its default value is "IRK2".

• IntegrationNodes. This option specifies the the number of intermediate points between
𝑡 and 𝑡+ 𝑇𝑠 during numerical integration of a continuous time model. Use larger values
when the plant is stiff at the price of computational efficiency. Its default value is 1. The
approach used here is refered to as direct multiple shooting.

• x0. This option is used to create initial guess of optimal state trajectory at cold start. It
must be a column vector of nx-by-1. The typical value should be the initial state of the
prediction model. If it is left empty, zeros will be used for cold start. Its default value is [].

• mv0. This option is used to create initial guess of optimal manipulated variable trajectory
at cold start. It must be a column vector of nmv-by-1. The typical value should be the
last known control action. If it is left empty, zeros will be used for cold start.

• Parameter. This option should be specified if the prediction model has a parameter. It
must be a column-vector and it can be updated at run-time.

• UseMVTarget. This option enables/disables MV reference signal. When equal to true, the
MV reference signal is provided via the onlinedata structure. When equal to false, the
MV reference is 0 by default. In this case, MV weights should be zero to avoid unexpected
behavior. Default value is false.

• UseOnlineWeightOV. This option enables/disables online OV weight change. When
equal to true, OV weight needs to be provided via onlinedata structure. Its default value
is false.

Chapter 7. MathWorks Nonlinear MPC Plugin 63

https://forces.embotech.com

FORCESPRO User Manual

• UseOnlineWeightMV. This option enables/disables online MV weight change. When
equal to true, MV weight needs to be provided via onlinedata structure. Its default value
is false.

• UseOnlineWeightMVRate. This option enables/disables online MVRate weight change.
When equal to true, MVRate weight needs to be provided via onlinedata structure. Its
default value is false.

• UseOnlineWeightECR. This field enables/disables online ECR weight change. When
equal to true, ECR weight needs to be provided via onlinedata structure. Its default value
is false.

• UseOnlineConstraintStateMax. This option enables/disables online state upper bound
change. When equal to true, state upper bound needs to be provided via onlinedata
structure. Its default value is false.

• UseOnlineConstraintStateMin. This field enables/disables online state lower bound
change. When equal to true, state lower bound needs to be provided via onlinedata
structure. Its default value is false.

• UseOnlineConstraintOVMax. This field enables/disables online OV upper bound
change. When equal to true, OV upper bound needs to be provided via the onlinedata
structure. Its default value is false.

• UseOnlineConstraintOVMin. This option enables/disables online OV lower bound
change. When equal to true, OV lower bound needs to be provided via the onlinedata
structure. Its default value is false.

• UseOnlineConstraintMVMax. This field enables/disables online MV upper bound
change. When equal to true, MV upper bound needs to be provided via the onlinedata
structure. Its default value is false.

• UseOnlineConstraintMVMin. This field enables/disables online MV lower bound change.
When equal to true, MV lower bound needs to be provided via the onlinedata structure.
Its default value is false.

• UseOnlineConstraintMVRateMax. This option enables/disables online MVRate upper
bound change. When equal to true, MVRate upper bound needs to be provided via
the onlinedata structure. Its default value is false.

• UseOnlineConstraintMVRateMin. This option enables/disables online MVRate lower
bound change. When equal to true, MVRate lower bound needs to be provided via the
onlinedata structure. Its default value is false.

The following set of options are specific to the nonlinear interior point solver:

• IP_MaxIteration. This field specifies the maximum number of iterations in the interior
point solver. When the maximum number of iterations is reached (i.e. ExitFlag is 0), the
NLP solver aborts calculations and the result should be discarded. Default value is 200.

• IP_Mu0. This field specifies initial barrier parameter. It must be positive and its default
value is 0.1.

• IP_BarrierStrategy. This option specifies the strategy used to update the barrier parame-
ter at every iteration of the nonlinear interior point solver. It needs to be either monotone
or loqo. logo often leads to faster convergence, while monotone may help convergence
for difficult problems. Default value is loqo.

• IP_LinearSolver. This option sets the linear solver. It must be either normal_eqs,
symm_indefinite, symm_indefinite_fast or symm_indefinite_legacy. With normal_eqs,
the KKT system is solved in normal equations form. With symm_indefinite, the KKT
system is solved with an improved variant of 'symm_indefinite_legacy' introduced in
FORCESPRO version 5.0.0. With symm_indefinite_legacy, the KKT system is solved us-
ing block-indefinite factorizations. With symm_indefinite_fast, the KKT system is solved
in symmetric indefinite form, using regularization and positive definite Cholesky factor-
izations only. Default value is normal_eqs.

64 Chapter 7. MathWorks Nonlinear MPC Plugin

FORCESPRO User Manual

• IP_EqualityTolerance. This option specifies the tolerance on the nonlinear equality con-
straints used by the nonlinear interior point solver. It must be positive. Default value is
10−6.

• IP_InequalityTolerance. This field specifies the tolerance on the nonlinear inequality con-
straints used by the interior-point solver. It needs to be positive and its default value is
10−6.

• IP_StationarityTolerance. This option specifies the tolerance on the stationarity measure
used in the nonlinear interior point solver. It needs to be positive and its default value is
10−5.

The following set of options are specific to the sequential quadratic programming solver:

• SQP_MaxIteration. This field specifies the maximum number of iterations used by the
inner QP solver. Its default value is 50.

• SQP_MaxQPS. This enables the SQP solver to solve a fixed amount of quadratic approx-
imations at every call to the solver. In general, the more quadratic approximations are
solved, the more accurate control performance is achieved. The tradeoff is that the sol-
vetime also increases. The default value is 1.

• SQP_RegHessian. This field stands for the level of regularization of the hessian approxi-
mation. Increasing this parameter may help if the SQP solver returns exitflag −8 on your
problem. The default value is 5 · 10−9.

• SQP_EqualityTolerance. This option specifies the tolerance on the nonlinear equality
constraints. It must be positive and its default value is 10−6.

• SQP_InequalityTolerance. This option specifies the tolerance on the linear inequality
constraints. It must be positive and its default value is 10−6.

• SQP_StationarityTolerance. This field specifies the tolerance on stationarity. It must be
positive and its default value is 10−5.

7.4.2 Using an “nlmpcMultistage” object

When generating a FORCESPRO solver using an nlmpcMultistage object, the main difference
compared to the existing nonlinear MPC from The MathWorks based on the fmincon solver
from the Optimization Toolbox is a code generation step that takes the nonlinear MPC object
as argument. This is needed in order to build a mex interface for a FORCESPRO nonlinear
solver that is customized to the model provided by the user.

Given an nlmpcMultistage object, users can generate an IP nonlinear solver tailored to their
specific problem via the following command:

% nlmul is the output of nlmpcMultistage(...)
% options is the output of nlmpcMultistageToForcesOptions(...)

[coredata, onlinedata] = nlmpcMultistageToForces(nlmul, options);

The nlmpcMultistageToForcesAPI allows the user to customize the generated solver to a much
higher extend than that of the nlmpc object. In particular it supports a different cost function
associated with each stage, with the restriction that each cost function can only depend on
the optimization variables of a single stage.

The nlmpcMultistageToForces API is described in more details in the tables below. The
nlmpcMultistageToForces command expects an nlmpcMultistage object nlmul and a structure
options as arguments.

Chapter 7. MathWorks Nonlinear MPC Plugin 65

FORCESPRO User Manual

Table 7.2: nlmpcMultistageToForces arguments
Input Description
nlmul nlmpcMultistage object constructed by Model Predictive Control Toolbox (see here)
options Object that provides solver generation options.

The outputs of nlmpcMultistageToForces consist of two structures coredata, a structure con-
taining the constant NLMPCMultistage information used by nlmpcmoveForcesMultistage
and onlinedata, a structure that allows you to specify online signals such as x, lastMV, ref,
MVTarget, md as well as weights or bounds used by nlmpcmoveForces.

In order to provide the solver options to nlmpcmoveForcesMultistage, the user needs to run
the command nlmpcMultistageToForcesOptions. The options structure contains the following
fields:

• SolverName. This is the solver name used by MEX and C files. Its default value is
myForcesNLPSolver.

• SolverType. This option specifies which FORCESPRO nonlinear programming solver to
use. Currently the only options is InteriorPoint.

• SkipSolverGeneration. This option indicates whether nlmpcToForces should generate the
custom NLP solver. When true, nlmpcMultistageToForces will return structures without
regenerating the MEX and C files. Its default value is false.

• Server. This option specifies the FORCESPRO server address for remote solver genera-
tion. Its default value is https://forces.embotech.com.

• PrintLevel. This option specifies the amount of information displayed in the solver log.

• ForcesTargetPlatform for choosing a target platform to deploy the solver. Currently,
dSpace, Speedgoat, BeagleBone-Blue and AURIX are supported.

– 0: no output will be written

– 1: summary line of each solve

– 2: summary line of each iteration

Its default value is 0.

• IntegrationMethod. This option specifies the choice of integration scheme. I.e. the way
in which the continuous dynamics are discretized. This field is only available from MAT-
LAB R2021a onwards. The different integration schemes are

– "IRK2": Implicit Runge Kutta method of order 2

– "RK4": Explicit Runge Kutta method of order 4

• IntegrationNodes. This option specifies the the number of intermediate points between
𝑡 and 𝑡+ 𝑇𝑠 during numerical integration of a continuous time model. Use larger values
when the plant is stiff at the price of computational efficiency. Its default value is 1. The
approach used here is refered to as direct multiple shooting.

• x0. This option is used to create initial guess of optimal state trajectory at cold start. It
must be a column vector of nx-by-1. The typical value should be the initial state of the
prediction model. If it is left empty, zeros will be used for cold start. Its default value is [].

• mv0. This option is used to create initial guess of optimal manipulated variable trajectory
at cold start. It must be a column vector of nmv-by-1. The typical value should be the
last known control action. If it is left empty, zeros will be used for cold start.

• NumInequalityConstraints. Must be a (𝑝+ 1)-by-1 vector where each entry specifies the
number of inequality constraints gnerated by the IneqConFcn at that stage. Leave it [] if
no IneqConFcn id defined in the nlmpcMultistage object.

66 Chapter 7. MathWorks Nonlinear MPC Plugin

https://www.mathworks.com/help/mpc/ug/specify-prediction-model-for-nonlinear-mpc.html
https://forces.embotech.com

FORCESPRO User Manual

• NumEqualityConstraints. Must be a 𝑝-by-1 vector where each entry specifies the num-
ber of equality constraints generated by the EqConFcn at that stage. Leave it [] if no
EqConFcn is defined in the nlmpcMultistage object.

• UseOnlineConstraintStateMax. This option enables/disables online state upper bound
change. When equal to true, state upper bound needs to be provided via onlinedata
structure. Its default value is false.

• UseOnlineConstraintStateMin. This field enables/disables online state lower bound
change. When equal to true, state lower bound needs to be provided via onlinedata
structure. Its default value is false.

• UseOnlineConstraintMVMax. This field enables/disables online MV upper bound
change. When equal to true, MV upper bound needs to be provided via the onlinedata
structure. Its default value is false.

• UseOnlineConstraintMVMin. This field enables/disables online MV lower bound change.
When equal to true, MV lower bound needs to be provided via the onlinedata structure.
Its default value is false.

• UseOnlineConstraintMVRateMax. This option enables/disables online MVRate upper
bound change. When equal to true, MVRate upper bound needs to be provided via
the onlinedata structure. Its default value is false.

• UseOnlineConstraintMVRateMin. This option enables/disables online MVRate lower
bound change. When equal to true, MVRate lower bound needs to be provided via the
onlinedata structure. Its default value is false.

• UseOnlineTerminalState. This option enables/disables online terminal state condition.
When equal to true, terminal state values need to be provided via the onlinedata struc-
ture. Its default value is false.

The following set of options are specific to the nonlinear interior point solver:

• IP_MaxIteration. This field specifies the maximum number of iterations in the interior
point solver. When the maximum number of iterations is reached (i.e. ExitFlag is 0), the
NLP solver aborts calculations and the result should be discarded. Default value is 200.

• IP_Mu0. This field specifies initial barrier parameter. It must be positive and its default
value is 0.1.

• IP_BarrierStrategy. This option specifies the strategy used to update the barrier parame-
ter at every iteration of the nonlinear interior point solver. It needs to be either monotone
or loqo. logo often leads to faster convergence, while monotone may help convergence
for difficult problems. Default value is loqo.

• IP_LinearSolver. This option sets the linear solver. It must be either normal_eqs,
symm_indefinite, symm_indefinite_fast or symm_indefinite_legacy. With normal_eqs,
the KKT system is solved in normal equations form. With symm_indefinite, the KKT
system is solved with an improved variant of 'symm_indefinite_legacy' introduced in
FORCESPRO version 5.0.0. With symm_indefinite_legacy, the KKT system is solved us-
ing block-indefinite factorizations. With symm_indefinite_fast, the KKT system is solved
in symmetric indefinite form, using regularization and positive definite Cholesky factor-
izations only. Default value is normal_eqs.

• IP_EqualityTolerance. This option specifies the tolerance on the nonlinear equality con-
straints used by the nonlinear interior point solver. It must be positive. Default value is
10−6.

• IP_InequalityTolerance. This field specifies the tolerance on the nonlinear inequality con-
straints used by the interior-point solver. It needs to be positive and its default value is
10−6.

• IP_StationarityTolerance. This option specifies the tolerance on the stationarity measure
used in the nonlinear interior point solver. It needs to be positive and its default value is
10−5.

Chapter 7. MathWorks Nonlinear MPC Plugin 67

FORCESPRO User Manual

7.5 Simulation in MATLAB and Simulink

Once a FORCESPRO nonlinear solver has been generated by calling either nlmpcToForces or
nlmpcMultistageToForces, optimal control moves can be calculated in MATLAB by using either
nlmpcmoveForces or nlmpcmoveForcesMultistage depending on the case. This API method ex-
pects a coredata structure as returned by nlmpcToForces or nlmpcMultistageToForces as well
as the other inputs described in Table below.

Table 7.3: nlmpcmoveForces and nlmpcMultistageTo-
Forces arguments

Input Description
coredata A structure containing the constant controller settings. It is generated by

the nlmpcToForces method and used as a constant
x A 𝑛𝑥-by-1 column vector, representing the current prediction model states
lastMV A 𝑛𝑚𝑣-by-1 column vector, representing the control action applied to the

plant at the previous control interval
onlinedata A structure containing run time signals

The outputs of nlmpcmoveForces and nlmpcMultistageToForces are described in the table below.

Table 7.4: nlmpcmoveForces and nlmpcMultistageTo-
Forces outputs

Output Description
mv Optimal control moves computed by a FORCESPRO solver
onlinedata A structure prepared for the next control, containing e.g. the initial guess.
info A structure containing extra information about the solver run

7.6 Code generation in MATLAB and Simulink

The nlmpcmoveForces and nlmpcmoveForcesMultistage commands can be turned into a
MEX interface named nlmpcmove_<solvername> by means of the SkipSolverGeneration. If
the option is set to true, then no MEX interface is built by the MATLAB Coder. If it is set to false,
then the nlmpcmove MEX interface is generated and compiled, which requires the MATLAB
Coder.

7.7 Examples

Here we present the following examples to illustrate the workflow of the FORCESPRO plugin
for the MPC Toolbox:

• Example Controlling a CSTR reactor illustrates how to generate a FORCESPRO solver
from an NLMPC object directly in MATLAB®.

• Example Lane following example illustrates how to generate a FORCESPRO solver from
an NLMPC object and run it based on the nlmpc Simulink block.

• Example Rocket landing example illustrates how to generate a FORCESPRO solver from
an NLMPCMultistage object.

68 Chapter 7. MathWorks Nonlinear MPC Plugin

FORCESPRO User Manual

7.7.1 Controlling a CSTR reactor

In this example we create a nonlinear MPC controller for a CSTR reactor using the MathWorks
Nonlinear MPC Plugin. The objective is to control the concentration 𝐶𝐴 of reagent 𝐴.

You can find the code of this example to try it out for yourself in the examples/Matlab/
mpc-toolbox-plugin/nonlinearModels/nlmpc_cstr folder that comes with your FORCESPRO
client.

Click here for a detailed description of the model. The state of our plant will be denoted by 𝑥,
while our control input will be denoted by 𝑢.

𝑥1 : Reactor temparature (𝐾)

𝑥2 : Concentration of 𝐴 in reactor tank
(︂
𝑘𝑔𝑚𝑜𝑙

𝑚3

)︂
𝑢1 : Jacket coolant temperature (𝐾)

𝑢2 : Concentration of A in inlet feed stream
(︂
𝑘𝑔𝑚𝑜𝑙

𝑚3

)︂
𝑢3 : Inlet feed stream temperature (𝐾)

The system dynamics are given by the following first order differential equation

𝑥1 = (𝑢3 − 𝑥1) + 0.3 · (𝑢1 − 𝑥1) + 11.92 · 27944640 · exp(−5894.14
𝑥1

) · 𝑢2
𝑥2 = (𝑢2 − 𝑥2) − 27944640 · exp(−5894.14

𝑥1
) · 𝑢2

For the purpose of this demonstration the MATLAB function describing the state dynamics
will be denoted by exocstrStateFcnCT. Our output 𝑦 is simply given by the concentration of
𝐴:

𝑦 = 𝑥2

Creating an NLMPC object

The MATLAB function implementing this output will be denoted by exocstrOutputFcn. With
the implemented exocstrStateFcnCT and exocstrOutputFcn MATLAB functions at hand we
can go ahead create our NLMPC object. The following code-snippet constructs the NLMPC
object and specifies our model.

nx = 2;
ny = 1;
nu = 3;
nlobj = nlmpc(nx,ny,'MV',1,'MD',[2 3]);
Ts = 0.5;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = 6;
nlobj.ControlHorizon = [2 2 2];
nlobj.MV.RateMin = -5;
nlobj.MV.RateMax = 5;
nlobj.Model.StateFcn = 'exocstrStateFcnCT';
nlobj.Model.OutputFcn = 'exocstrOutputFcn';

Specifying solver options

The followowing specifies the code options specific to FORCESPRO’s MathWorks Nonlinear
MPC Plugin:

Chapter 7. MathWorks Nonlinear MPC Plugin 69

https://ch.mathworks.com/help/mpc/ug/nonlinear-model-predictive-control-of-exothermic-chemical-reactor.html

FORCESPRO User Manual

options = nlmpcToForcesOptions();
options.SolverName = 'CstrSolver';
options.SolverType = 'SQP';
options.IntegrationNodes = 5;
options.SQP_MaxQPS = 5;
options.SQP_MaxIteration = 500;
options.x0 = [311.2639; 8.5698];
options.mv0 = 298.15;

Generating the NLP solver

Once we have our NLMPC object and our options we can generate an NLP solver through
the nlmpcToForces function:

[coredata, onlinedata] = nlmpcToForces(nlobj,options);

Calling the solver

This will generate our NLP solver named CstrSolver. We can call this solver in two different
ways:

• Through the generic nlmpcmoveForces function which comes with the FORCESPRO
MathWorks Nonlinear MPC Plugin

• Or through the generated MEX function nlmpcmove_CstrSolver (the name of the MEX
is always “nlmpc_<solver name>”). In general it is advantagous from a performance per-
spective to use the MEX over the generic nlmpcmoveForces function.

Calling the NLP solver through the generic nlmpcmoveToForces can be done as in the fol-
lowing code-snippet:

onlinedata.md = [10 298.15];
[mv, onlinedata, info] = nlmpcmoveForces(coredata,x,mv,onlinedata);

And the MEX can be called as follows:

[mv, onlinedata, info] = nlmpcmove_CstrSolver(x,mv,onlinedata);

Results

The NLP solver generated through the above code-snippets were applied in a simulation for
200 seconds. As can be seen in the plots Figure 7.1, Figure 7.2 and Figure 7.3 the generated
solver succeeds in controlling the CSTR reactor with a very fast solvetime while the output
stays close to the reference.

7.7.2 Lane following example

In this example, the use of the nlmpc plugin in Simulink is described. The example consists
in making a vehicle follow a central line while keeping a user-specified velocity.

You can find the code of this example to try it out for yourself in the examples/Matlab/
mpc-toolbox-plugin/nonlinearModels/lane_following folder that comes with your FORCE-
SPRO client.

70 Chapter 7. MathWorks Nonlinear MPC Plugin

FORCESPRO User Manual

Figure 7.1: Cost as a function of time.

Figure 7.2: Solve time as a function of simulation time.

Chapter 7. MathWorks Nonlinear MPC Plugin 71

FORCESPRO User Manual

Figure 7.3: Concentration of 𝐴 as a function of simulation time.

Create an NLMPC object

An nlmpc object with measured and unmeasured disturance is first created.

nlobj = nlmpc(7,3,'MV',[1 2],'MD',3,'UD',4);

The NMPC controller sample time, prediction horizon and control horizon are then specified.

nlobj.Ts = Ts;
nlobj.PredictionHorizon = 10;
nlobj.ControlHorizon = 2;

The dynamics are provided as a function name.

nlobj.Model.StateFcn = 'LaneFollowingStateFcn';

The output variables returned by LaneFollowingOutputFcn are the longitudinal velocity, the
lateral deviation and the sum of the yaw angle and yaw angle output disturbance

nlobj.Model.OutputFcn = 'LaneFollowingOutputFcn';

Bound constraints are set on the manipulated (input) variables.

nlobj.MV(1).Min = -3; % Maximum acceleration 3 m/s^2
nlobj.MV(1).Max = 3; % Minimum acceleration -3 m/s^2
nlobj.MV(2).Min = -1.13; % Minimum steering angle -65
nlobj.MV(2).Max = 1.13; % Maximum steering angle 65

Scaling factors are incorporated on output and manipulated variables to optimize solver per-
formance.

72 Chapter 7. MathWorks Nonlinear MPC Plugin

FORCESPRO User Manual

nlobj.OV(1).ScaleFactor = 15; % Typical value of longitudinal velocity
nlobj.OV(2).ScaleFactor = 0.5; % Range for lateral deviation
nlobj.OV(3).ScaleFactor = 0.5; % Range for relative yaw angle
nlobj.MV(1).ScaleFactor = 6; % Range of steering angle
nlobj.MV(2).ScaleFactor = 2.26; % Range of acceleration
nlobj.MD(1).ScaleFactor = 0.2; % Range of Curvature

Weights on outputs and the rates of manipulated variables are set in the NLMPC object ob-
jective function.

nlobj.Weights.OutputVariables = [1 1 0];

%%
% Penalize acceleration change more for smooth driving experience.
nlobj.Weights.ManipulatedVariablesRate = [0.3 0.1];

A nonlinear interior-point FORCESPRO solver is generated from a customizable options struc-
ture.

options = nlmpcToForcesOptions();
% Set solver name
options.SolverName = 'LaneFollowSolver';
% Choose solver type 'InteriorPoint' or 'SQP'
options.SolverType = 'InteriorPoint';
% x0 and u0 are used to create a primal initial guess
options.x0 = x0;
options.mv0 = u0;
tm = tic;
[coredata, onlinedata] = nlmpcToForces(nlobj,options);
tBuild = toc(tm);

The FORCESPRO NLMPC Simulink block can then be used seamlessly. It is available in the
Simulink Library Browser in the Model Predictive Control Toolbox section, as shown in Figure
Figure 7.4.

Figure 7.4: FORCESPRO NMPC block.

In order to run the nonlinear interior-point solver, the coredata structure returned by nlm-
pcToForces must be provided in the block mask, as shown in Figure Figure 7.5.

The Simulink model can finally be run using the sim command.

Chapter 7. MathWorks Nonlinear MPC Plugin 73

FORCESPRO User Manual

Figure 7.5: FORCESPRO NMPC block mask.

sim('LaneFollowingNMPC')

Results are shown in Figures Figure 7.6 and Figure 7.7.

Figure 7.6: Vehicle lateral deviation.

Simulink Coder (R) enables users to generate an executable from the FORCESPRO NLMPC
block, so that it can be deployed for real-time applications.

Deploying the Lane Following Model on Speedgoat

The lane following model in Figure Figure 7.8 can be easily deployed on Speedgoat platforms
by means of the code below.

% Choose Speedgoat x86 platform to run FORCESPRO solver
options.ForcesTargetPlatform = 'Speedgoat-x86';

(continues on next page)

74 Chapter 7. MathWorks Nonlinear MPC Plugin

FORCESPRO User Manual

Figure 7.7: Vehicle velocity.

(continued from previous page)

% x0 and u0 are used to create a primal initial guess
options.x0 = x0;
options.mv0 = u0;
% Generate FORCESPRO solver
tm = tic;
[coredata, onlinedata] = nlmpcToForces(nlobj,options);
tBuild = toc(tm);

%%
% Start code generation for Speedgoat x86
mdl = 'LaneFollowingNMPC_Speedgoat_x86';
open_system(mdl); % Open Simulink(R) Model
load_system(mdl); % Load Simulink(R) Model
rtwbuild(mdl); % Start Code Generation

% Deploy application from the start
tg = slrt;
if(~strcmpi(tg.Application, 'loader'))

tg.unload();
end
tg.load(mdl);

% Execute application
tg.start();
while(strcmpi(tg.Status, 'running'))

pause(Ts);
end
scope1 = tg.getscope(1);
scope2 = tg.getscope(2);
scope3 = tg.getscope(3);

All the files necessary to run this example can be downloaded here.

Chapter 7. MathWorks Nonlinear MPC Plugin 75

FORCESPRO User Manual

Figure 7.8: Simulink Real-Time Lane Following model for Speedgoat deployment.

7.7.3 Rocket landing example

In this example we consider the motion planning problem of landing a rocket safely. The
FORCESPRO solver is generated using a NLMPCMultistage object. We will cover the details
of the model below. For further details, see here.

You can find the code of this example to try it out for yourself in the examples/Matlab/
mpc-toolbox-plugin/nonlinearModels/rocket_planner folder that comes with your FORCE-
SPRO client.

The dynamical model

The model we consider is a first-principles non-linear dynamical model. The state 𝑥 of our sys-
tem is 6-dimensional while the control 𝑢 is 2-dimensional. The interpretation of the different
states/control inputs is given as follows:

𝑢1 : Left thrust (𝑁)

𝑢2 : Right thrust (𝑁)

𝑥1 : Horizontal position of the center of gravity (𝑚)

𝑥2 : Vertical position of the center of gravity (𝑚)

𝑥3 : Tilt with respect to the center of gravity (𝑟)

𝑥4 = 𝑑𝑥1

𝑑𝑡 (𝑚𝑠)

𝑥5 = 𝑑𝑥2

𝑑𝑡 (𝑚𝑠)

𝑥6 = Angular velocity (𝑟𝑠)

76 Chapter 7. MathWorks Nonlinear MPC Plugin

https://www.mathworks.com/help/mpc/ug/landing-rocket-with-mpc-example.html

FORCESPRO User Manual

The differential equation governing the dynamics is given by

�̇�1 = 𝑥4

�̇�2 = 𝑥5

�̇�3 = 𝑥6

�̇�4 =
− sin(𝑥3)(𝑢1 + 𝑢2)

𝑚

�̇�5 =
cos(𝑥3)(𝑢2 − 𝑢1)

𝑚
− 𝑔

�̇�6 =
2𝐿2(𝑢2 − 𝑢1)

𝑚𝐿2
1

,

where we use of the following constants:

Name Value Description
𝐿1 10𝑚 Center of gravity to top/bottom end
𝐿2 5𝑚 Center of gravity to left/right end
𝑚 1𝑘𝑔 Mass of rocket
𝑔 9.806𝑚𝑠2 Gravitational constant

Constructing a NLMPCMultistage object

The first step to generate a FORCESPRO solver is to construct a nlmpcMultistage object and
set the constraints on our manipulated variables (MV) and states (State).

% Construct nlmpcMultistage object and set dynamics
Ts = 0.2;
pPlanner = 50;
planner = nlmpcMultistage(pPlanner,6,2);
planner.Ts = Ts;

% Limit thrusts between 0 and 8 Newton
planner.MV(1).Min = 0;
planner.MV(1).Max = 8;
planner.MV(2).Min = 0;
planner.MV(2).Max = 8;

% Specify lower bound on y-axis to avoid crashing
planner.States(2).Min = 10;

Then we specify the state transition function along with a cost function for every stage. Note
that these functions are specified via the of the function.

planner.Model.StateFcn = 'RocketStateFcn';
for ct=1:pPlanner

planner.Stages(ct).CostFcn = 'RocketPlannerCostFcn';
end

Specifying solver options and generating a solver

Once we have defined our nlmpcMultistage object planner we need to specify information
about the solver we would like to generate. This can be done through the options generated
by nlmpcMultistageToForcesOptions

Chapter 7. MathWorks Nonlinear MPC Plugin 77

FORCESPRO User Manual

%% Generate FORCES NLP Solver
options = nlmpcMultistageToForcesOptions;
options.Server = 'https://forces.embotech.com/';
options.x0 = x0;
options.mv0 = u0;
options.UseOnlineConstraintMVMin = true;
options.UseOnlineConstraintMVMax = true;
options.UseOnlineConstraintStateMin = true;

With both our options and nlmpcMultistage object at hand we can go ahead and generate
the FORCESPRO solver:

[coredata, onlinedata, model] = nlmpcMultistageToForces(planner, options);

Results

In plot Figure 7.9 the optimal trajectory for landing the rocket is displayed. As can be ob-
served in the generated animation which appears when running the code (see Figure 7.10),
the FORCESPRO solver manages to control the rocket and land it safely.

Figure 7.9: Optimal rocket trajectory.

78 Chapter 7. MathWorks Nonlinear MPC Plugin

FORCESPRO User Manual

Figure 7.10: Rocket lander animation generated when running the rocket lander example.

Chapter 7. MathWorks Nonlinear MPC Plugin 79

FORCESPRO User Manual

80 Chapter 7. MathWorks Nonlinear MPC Plugin

FORCESPRO User Manual

Chapter 8

Low-level interface

• Supported problem class

• Multistage struct

• Dimensions

• Cost function

• Equality constraints

• Lower and upper bounds

• Polytopic constraints

• Quadratic constraints

– Example

• Binary constraints

• Declaring parameters

• Declaring Solver Outputs

– Example

• Generating the solver

• Calling the generated low-level solver

• Debugging a formulation

• The QP_FAST algorithm

– Tuning the QP_FAST algorithm

– The QP_FAST options

FORCESPRO supports designing solvers and controllers via MATLAB and Python scripts.
When using the MATLAB client, a Simulink block is always created such that you can plug
your advanced formulation directly into your simulation models, or download it to a real-time
target platform.

The low-level interface gives advanced optimization users the full flexibility when designing
custom optimization solvers and MPC controllers based on non-standard formulations.

This interface is provided with all variants of FORCESPRO, starting with Variant S.

81

FORCESPRO User Manual

8.1 Supported problem class

The FORCESPRO low-level interface supports the class of convex multistage quadratically
constrained programs (QCQPs) of the form

minimize
𝑁∑︁
𝑖=1

1

2
𝑧⊤𝑖 𝐻𝑖𝑧𝑖 + 𝑓⊤𝑖 𝑧𝑖 (separable objective)

subject to 𝐷1𝑧1 = 𝑐1 (initial equality)
𝐶𝑖−1𝑧𝑖−1 +𝐷𝑖𝑧𝑖 = 𝑐𝑖, 𝑖 = 2, . . . , 𝑁 (inter-stage equality)
𝑧𝑖 ≤ 𝑧𝑖 (lower bound)
𝑧𝑖 ≤ 𝑧𝑖 (upper bound)
𝐴𝑖𝑧𝑖 ≤ 𝑏𝑖 (polytopic inequalities)

𝑧⊤𝑖 𝑄𝑖,𝑘𝑧𝑖 + 𝐿⊤
𝑖,𝑘𝑧𝑖 ≤ 𝑟𝑖,𝑘 (quadratic inequalities)

for 𝑖 = 1, ..., 𝑁 and 𝑘 = 1, ...,𝑀 . To obtain a solver for this optimization program using the
FORCESPRO client, you need to define all data in the problem, that is the matrices 𝐻𝑖, 𝐴𝑖,
𝑄𝑖,𝑗 ,𝐷𝑖, 𝐶𝑖 and the vectors 𝑧𝑖 < 𝑧𝑖, 𝑏𝑖, 𝐿𝑖,𝑘 , 𝑟𝑖,𝑘 , 𝑐𝑖, in a MATLAB struct or Python dictionary, along
with the corresponding dimensions. The following steps will take you through this process.
Importantly, the matrices 𝐻𝑖 and 𝑄𝑖,𝑗 should all be positive definite.

Note: FORCESPRO supports all problem data to be parametric, i.e. to be unknown at code
generation time. Read Section 12 to learn how to use parameters correctly.

In the following, we describe how to model a problem of the above form with FORCESPRO.
First make sure that the FORCESPRO client is on the MATLAB/Python path. See Section 3 for
more details on how to set up the MATLAB client and Section 3.3.

After the PYTHONPATH has been appropriately set up to include your FORCESPRO client
directory (see Section 3.3.3), Python users have to import the FORCESPRO module and their
user ID.

import forcespro
import get_userid

8.2 Multistage struct

First, an empty struct/class has to be initialized, which contains all fields needed and initialises
matrices and vectors to empty matrices. The command

Matlab

Python

stages = MultistageProblem(N);

stages = forcespro.MultistagePoblem(N) # 0-indexed

creates such an empty structure/class of length𝑁 . Once this structure/class has been created,
the corresponding matrices, vectors and dimensions can be set for each element of stages.

82 Chapter 8. Low-level interface

FORCESPRO User Manual

8.3 Dimensions

In order to define the dimensions of the stage variables 𝑧𝑖, the number of lower and upper
bounds, the number of polytopic inequality constraints and the number of quadratic con-
straints use the following fields:

Matlab

Python

stages(i).dims.n = ...; % length of stage variable zi
stages(i).dims.r = ...; % number of equality constraints
stages(i).dims.l = ...; % number of lower bounds
stages(i).dims.u = ...; % number of upper bounds
stages(i).dims.p = ...; % number of polytopic constraints
stages(i).dims.q = ...; % number of quadratic constraints

0-indexed
stages.dims[i]['n'] = ... # length of stage variable zi
stages.dims[i]['r'] = ... # number of equality constraints
stages.dims[i]['l'] = ... # number of lower bounds
stages.dims[i]['u'] = ... # number of upper bounds
stages.dims[i]['p'] = ... # number of polytopic constraints
stages.dims[i]['q'] = ... # number of quadratic constraints

8.4 Cost function

The cost function is, for each stage, defined by the matrix 𝐻𝑖 and the vector 𝑓𝑖. These can be
set by

Matlab

Python

stages(i).cost.H = ...; % Hessian
stages(i).cost.f = ...; % linear term

0-indexed
stages.cost[i]['H'] = ... # Hessian
stages.cost[i]['f'] = ... # linear term

Note: whenever one of these terms is zero, you have to set them to zero (otherwise the default
of an empty matrix is assumed, which is different from a zero matrix).

H_i should be square of size dims[i]['n'] / stages(i).dims.n and f_i should also be of that
length. It does not matter whether you use a column or row vector for f.

8.5 Equality constraints

The equality constraints for each stage, which are given by the matrices𝐶𝑖−1,𝐷𝑖 and the vector
𝑐𝑖, have to be provided in the following form:

The matrices 𝐶𝑖−1, 𝐷𝑖 should have dimension dims[i]['r'] by dims[i]['n'] and 𝑐𝑖 should be
of length dim[i]['r'].

Chapter 8. Low-level interface 83

FORCESPRO User Manual

Note the index shift in 𝐶𝑖−1. In particular you should take care, that the vertical dimension of
𝐶𝑖−1 matches dim[i]['r'] and not i-1.

Matlab

Python

stages(i).eq.C = ...;
stages(i).eq.c = ...;
stages(i).eq.D = ...;

0-indexed
stages.eq[i]['C'] = ...
stages.eq[i]['c'] = ...
stages.eq[i]['D'] = ...

In many parts of the literature a different notation is given for inter-stage equality, which
places the next index on the right hand side of the equation like so:

𝐴𝑖𝑥𝑖 +𝐵𝑖𝑢𝑖 = 𝑥𝑖+1, 𝑖 = 1, . . . , 𝑁 − 1 (inter-stage equality)

with states 𝑥𝑖 and control inputs 𝑢𝑖.

The correct way to translate this to FORCESPRO is as follows:(︀
𝐵𝑖−1 𝐴𝑖−1

)︀
𝑧𝑖−1 +

(︀
0 −Id

)︀
𝑧𝑖 = 0, 𝑖 = 2, . . . , 𝑁

where 𝑧𝑖 = (𝑢𝑖, 𝑥𝑖). Note that the number of columns of −Id must match the size of 𝑥𝑖.

There is the common case of a fixed initial value 𝑥1 = 𝑥𝑖𝑛𝑖𝑡. This can be implemented by
adding an equality constraint for 𝑖 = 1:(︀

0 −Id
)︀
𝑧1 = −𝑥𝑖𝑛𝑖𝑡

Alternatively, one stage can be eliminated by defining the state space as 𝑧𝑖 = (𝑢𝑖, 𝑥𝑖+1) for
𝑖 = 1, . . . 𝑁 − 1 (thus removing 𝑥1 and 𝑢𝑁). For that choice, the inter-stage equalities are given
by: (︀

𝐵1 −Id
)︀
𝑧1 = −𝐴1𝑥𝑖𝑛𝑖𝑡(︀

0 𝐴𝑖
)︀
𝑧𝑖−1 +

(︀
𝐵𝑖 −Id

)︀
𝑧𝑖 = 0 𝑖 = 2, . . . , 𝑁 − 1

8.6 Lower and upper bounds

Lower and upper bounds have to be set in sparse format, i.e. an index vector lbIdx/ubIdx that
defines the elements of the stage variable 𝑧𝑖 has to be provided, along with the corresponding
upper/lower bound lb/ub:

These index vectors will be the same in both Matlab and Python, which means that the
Python indices need to be adjusted to match Matlab’s 1-indexed style.

Matlab

Python

stages(i).ineq.b.lbidx = ...; % index vector for lower bounds
stages(i).ineq.b.lb = ...; % lower bounds
stages(i).ineq.b.ubidx = ...; % index vector for upper bounds
stages(i).ineq.b.ub = ...; % upper bounds

84 Chapter 8. Low-level interface

FORCESPRO User Manual

stages.ineq[i]['b']['lbidx'] = ... # index vector for lower bounds, 1-indexed
stages.ineq[i]['b']['lb'] = ... # lower bounds
stages.ineq[i]['b']['ubidx'] = ... # index vector for upper bounds, 1-indexed
stages.ineq[i]['b']['ub'] = ... # upper bounds

Both lb and lbIdx must have length stages(i).dims.l / stages.dims[i]['l'], and both ub
and ubIdx must have length stages(i).dims.u / stages.dims[i]['u'].

8.7 Polytopic constraints

In order to define the inequality 𝐴𝑖𝑧𝑖 ≤ 𝑏𝑖, use

Matlab

Python

stages(i).ineq.p.A = ...; % Jacobian of linear inequality
stages(i).ineq.p.b = ...; % RHS of linear inequality

0-indexed
stages.ineq[i]['p']['A'] = ... # Jacobian of linear inequality
stages.ineq[i]['p']['b'] = ... # RHS of linear inequality

The matrix A must have stages(i).dims.p / stages.dims[i][‘p’] rows and stages(i).dims.n /
stages.dims[i][‘n’] columns. The vector b must have stages(i).dims.p / stages.dims[i][‘p’]
rows.

8.8 Quadratic constraints

Similar to lower and upper bounds, quadratic constraints are given in sparse form by means of
an index vector, which determines on which variables the corresponding quadratic constraint
acts.

Matlab

Python

stages(i).ineq.q.idx = { idx1, idx2, ...}; % index vectors
stages(i).ineq.q.Q = { Q1, Q2, ...}; % Hessians
stages(i).ineq.q.l = { L1, L2, ...}; % linear terms
stages(i).ineq.q.r = [r1; r2; ...]; % RHSs

stages.ineq[i]['q']['idx'] = ... # index vectors, 1-indexed
stages.ineq[i]['q']['Q'] = ... # Hessians
stages.ineq[i]['q']['l'] = ... # linear terms
stages.ineq[i]['q']['r'] = ... # RHSs

If the index vector idx1 has length 𝑚1, then the matrix Q must be square and of size 𝑚1 ×𝑚1,
the column vector l1 must be of size 𝑚1 and r_1 is a scalar. Of course this dimension rules
apply to all further quadratic constraints that might be present. Note that L_1, L_2 etc. are
column vectors in MATLAB!

Since multiple quadratic constraints can be present per stage, in MATLAB we make use of
the cell notation for the Hessian, linear terms, and index vectors. In Python we make use of
Python object arrays for the Hessians, linear terms, and index vectors.

Chapter 8. Low-level interface 85

FORCESPRO User Manual

8.8.1 Example

To express the two quadratic constraints

𝑧23,3 + 2𝑧23,5 − 𝑧3,5 ≤ 3

5𝑧23,1 ≤ 1

on the third stage variable, use the code

Matlab

Python

stages(3).ineq.q.idx = { [3 5], [1] } % index vectors
stages(3).ineq.q.Q = { [1 0; 0 2], [5] }; % Hessians
stages(3).ineq.q.l = { [0; -1], [0] }; % linear terms
stages(3).ineq.q.r = [3; 1]; % RHSs

stages.ineq[3-1]['q']['idx'] = np.zeros((2,), dtype=object) # index vectors
stages.ineq[3-1]['q']['idx'][0] = np.array([3,5])
stages.ineq[3-1]['q']['idx'][1] = np.array([1])
stages.ineq[3-1]['q']['Q'] = np.zeros((2,), dtype=object) # Hessians
stages.ineq[3-1]['q']['Q'][0] = np.array([1.0 0],[0 2.0])
stages.ineq[3-1]['q']['Q'][1] = np.array([5])
stages.ineq[3-1]['q']['l'] = np.zeros((2,), dtype=object) # linear terms
stages.ineq[3-1]['q']['l'][0] = np.array([0], [-1])
stages.ineq[3-1]['q']['l'][1] = np.array([0])
stages.ineq[3-1]['q']['r'] = np.array([3],[1]) # RHSs

8.9 Binary constraints

To declare binary variables, you can use the bidx field of the stages struct or object. For ex-
ample, the following code declares variables 3 and 7 of stage 1 to be binary:

Matlab

Python

stages(1).bidx = [3 7]

stages.bidx[0] = np.array([3, 7])

That’s it! You can now generate a solver that will take into account the binary constraints on
these variables. If binary variables are declared, FORCESPRO will add a branch-and-bound
procedure to the standard convex solver it generates.

8.10 Declaring parameters

FORCESPRO is a parametric solver. As such, it is necessary to specify which parts of the model
are to be parametric.

For a detailed introduction to setting parameters, see the section Section 12.

A common choice of parameter is an 𝑥𝑖𝑛𝑖𝑡 value. To set this, use the following:

Matlab

Python

86 Chapter 8. Low-level interface

FORCESPRO User Manual

parameter = newParam('xinit', 1, 'eq.c')

stages.newParam("xinit", [1], 'eq.c') # 1-indexed

8.11 Declaring Solver Outputs

FORCESPRO gives you full control over the part of the solution that should be outputted by
the solver. It is also possible to obtain the Lagrange multipliers of certain constraints. To define
a standard output as a slice of the primal solution vector, use the function

Matlab

Python

output = newOutput(name, maps2stage, idxWithinStage)

stages.newOutput(name, maps2stage, idxWithinStage)

where name is the name you give to the output (you will need this to read it after calling the
solver). The index vector (or integer) maps2stage defines to which stage this output maps to.
The last argument, idxWithinStage allows the user to select which indices from the stage vec-
tor should be outputted by the solver.

To define an output as a slice of certain Lagrange multipliers, use the function

Matlab

Python

output = newOutput(name, maps2stage, idxWithinStage, maps2const)

stages.newOutput(name, maps2stage, idxWithinStage, maps2const)

where the remaining argument maps2const specifies the constraint associated with the La-
grange multipliers being requested.

Table 8.1: Possible string values for argument maps2const
maps2const Constraint
r Equalities
u Upper bounds
l Lower bounds
p Polytopic bounds

8.11.1 Example

To define an output to be the first two elements of the primal solution vector, use the following
command:

Matlab

Python

output1 = newOutput('u0', 1, 1:2)

stages.newOutput('u0', 1, range(1,3))

Chapter 8. Low-level interface 87

FORCESPRO User Manual

To define an output to be the first and third indices of the Lagrange multipliers for the equality
constraints of the second stage, use the following command:

Matlab

Python

output2 = newOutput('dual_eq0', 2, [1 3], 'r')

stages.newOutput('dual_eq0', 2, [1,3], 'r')

8.12 Generating the solver

After the optimization problem has been formulated into a structure stages, an optimized
solver can be generated. To do so, the solver requires a name and a number of solver options,
as described in Section 17.

Matlab

Python

codeoptions = getOptions('solver name');
generateCode(stages, params, codeoptions, outputs);

options = forcespro.CodeOptions('solver_name')
stages.codeoptions = options
stages.generateCode(get_userid.user_id)

8.13 Calling the generated low-level solver

After solver generation has completed, the solver itself (as a compiled library) as well as several
interfacing files will become available in your working directory. These files are named accord-
ing to what you named your solver; in the following we assume “SOLVER_NAME”. Calling the
solver from MATLAB or Python is then as simple as:

Matlab

Python

problem = {} % a struct of solver parameters
SOLVER_NAME(problem)

import SOLVER_NAME_py # notice the _py suffix
problem = {} # a dictionary of solver parameters
SOLVER_NAME_py.SOLVER_NAME_solve(problem)

Note: Don’t give your solver the same name as the script you are calling it from. Doing
so will overwrite your calling script with the solver interface. For example, in a script named
test_problem.m, choose a name such as test_solver instead of test_problem.

Note: The high-level Python interface provides more convenient access to solvers generated
using the high-level interface. This method of calling a solver is only available for solvers gen-

88 Chapter 8. Low-level interface

FORCESPRO User Manual

erated through the low-level interface, and high-level solvers can only be called from Python
through the means described in the high-level interface documentation.

8.14 Debugging a formulation

For debugging solvers returning bad exit flags (such as -7 or -10, see Exitflags), it is often help-
ful to convert a FORCESPRO multistage formulation into a standard (QC)QP. The function
stages2qcqp is provided for that purpose. To learn how to use this function, type

Matlab

Python

help stages2qcqp;

from forcespro.debug import stages2qcqp
help(stages2qcqp)

With the Matlab client, common formulation errors can be detected automatically by making
use of the utility FORCESdiagnostics (type help FORCESdiagnostics).

8.15 The QP_FAST algorithm

From FORCESPRO version 6.0.0 a new algorithm was introduced which allows one to gener-
ate extremely fast solvers which are especially well-suited for low-level hardware. Generating
such a solver is done by specifying the model through the stages object as explained above.
The main difference in the solver generation procedure is a tuning step which is explained in
details in the following section.

Important: Currently the QP_FAST algorithm is only supported through the MATLAB client
of FORCESPRO.

8.15.1 Tuning the QP_FAST algorithm

One of the novel features of the QP_FAST algorithm is that it can be tailored to a specific
application by “tuning” it. FORCESPRO supports an automated tuning tool (see Autotuner)
for choosing the optimal tuning for a given application. A key step in tuning a fast QP solver
is collecting data/problems on which it can be tuned. The way to do this is to first generate a
general QP (FORCESPRO) solver which does not require tuning. This is done as follows:

Matlab

Python

codeoptions.solvemethod = 'PDIP';
generateCode(stages, params, codeoptions, outputs);

not supported

Now one or more simulations can be performed and all the problems (i.e. the inputs to the
solver at run-time) which are solved should be collected and stored in a cell array (here called

Chapter 8. Low-level interface 89

FORCESPRO User Manual

problems). We refer to problems as the tuning data. Once tuning data has been collected, a
fast QP solver can be generated and tuned as follows:

Matlab

Python

tuningoptions = ForcesAutotuneOptions(problems);
ForcesGenerateQpFastSolver(stages,params,codeoptions,tuningoptions,outputs);

not supported

The autotuning procedure allows for quite a bit of customization which can be specified
through the ForcesAutotuneOptions object (see Autotuner Options).

You can find an example called “FORCESPRO_ActiveSuspensionControlQpFast.m” in the
examples folder of your FORCESPRO client, which shows the full workflow for the fast QP
solver.

8.15.2 The QP_FAST options

Options specific to the QP_FAST algorithm are specified via the codeoptions.qp_fast field (e.g.
codeoptions.qp_fast.warmstart = 0;). The following options can be set:

• warmstart: Set equal to 1 (default) in order to allow run-time warmstart. Set equal to
0 to not allow run-time warmstart. The run-time warmstart option creates a run-time
parameter (problem.warmstart) which if set to 1 will use the solution of the previous call
to the solver as initial guess. If set to 0 the solver will use a default initial guess.

• tol_primal: Set the tolerance for the primal residual (default is 1e-3).

• tol_dual: Set the tolerance for the dual residual (default is 1e-3).

90 Chapter 8. Low-level interface

FORCESPRO User Manual

Chapter 9

High-level Interface

• Supported problems

– Canonical problem for discrete-time dynamics

– Continuous-time dynamics

– Other variants

– Function evaluations

• Expressing the optimization problem in code

– Model Initialization

– Dimensions

– Objective

– Equalities

– Initial and final conditions

– Inequalities

– Variations

– Single precision callbacks

• Generating a solver

– Declaring outputs

• Calling the solver

– Initial guess

– Initial and final conditions

– Real-time parameters

– Tolerances as real-time parameters

– Exitflags and quality of the result

• External function evaluations in C

– Interface

– Supplying function evaluation information

– Rules for function evaluation code

– Matrix format

91

FORCESPRO User Manual

– Multiple source files

– Stage-dependent functions

– External function return values

• Calling the nonlinear functions from Matlab or Python

– Calling the nonlinear functions from MATLAB

– Calling the nonlinear functions from Python

• Mixed-integer nonlinear solver

– Writing a mixed-integer model

– Mixed-integer solver customization via user callbacks

– Providing a guess for the incumbent

• Sequential quadratic programming algorithm

– How to generate a SQP solver

– Different SQP variants

– Tuning the SQP Fast solver

– The hessian approximation and line search settings

– Controlling the initial guess at run-time

– Additional code options specific to the SQP-RTI solver

• Differences between the MATLAB and the Python client

• Examples

The FORCESPRO high-level interface gives optimization users a familiar easy-to-use way to
define an optimization problem. The interface also gives the advanced user full flexibility
when importing external C-coded functions to evaluate the quantities involved in the op-
timization problem.

This interface is provided with Variant L and partially with Variant M of FORCESPRO.

Important: Starting with FORCESPRO 1.8.0, the solver generated from the high-level inter-
face supports nonlinear and convex decision making problems with integer variables.

Note: The high-level Python interface expects 0-based indices in the model formulation,
such as for the indices in lbidx, ubidx, hlidx, huidx, xinitidx and xfinalidx, as is usual in Python
programs. Note that this is contrary to the low-level interface, which requires 1-based indices
for these fields.

9.1 Supported problems

92 Chapter 9. High-level Interface

FORCESPRO User Manual

9.1.1 Canonical problem for discrete-time dynamics

The FORCESPRO NLP solver solves (potentially) non-convex, finite-time nonlinear optimal
control problems with horizon length 𝑁 of the form:

minimize
𝑁∑︁
𝑘=1

𝑓𝑘(𝑧𝑘, 𝑝𝑘) (separable objective)

subject to 𝑧1(ℐ) = 𝑧init (initial equality)
𝐸𝑘𝑧𝑘+1 = 𝑐𝑘(𝑧𝑘, 𝑝𝑘) (inter-stage equality)
ℎ𝑘 ≤ ℎ𝑘(𝑧𝑘, 𝑝𝑘) ≤ ℎ̄𝑘 (nonlinear constraints)
𝑧𝑁 (𝒩) = 𝑧final (final equality)
𝑧𝑘 ≤ 𝑧𝑘 ≤ 𝑧𝑘 (lower-upper bounds)
𝐹𝑘𝑧𝑘 ∈ [𝑧𝑘, 𝑧𝑘] ∩ Z (integer variables)

for 𝑘 = 1, . . . , 𝑁 , where 𝑧𝑘 ∈ R𝑛𝑘 are the optimization variables, for example a collection of
inputs, states or outputs in an MPC problem; 𝑝𝑘 ∈ R𝑙𝑘 are real-time data, which are not nec-
essarily present in all problems; the functions 𝑓𝑘 : R𝑛𝑘 × R𝑙𝑘 → R are stage cost functions; the
functions 𝑐𝑘 : R𝑛𝑘 × R𝑙𝑘 → R𝑤𝑘 represents (potentially nonlinear) equality constraints, such as
a state transition function; the matrices 𝐸𝑘 are used to couple variables from the (𝑘 + 1)-th
stage to those of stage 𝑘 through the function 𝑐𝑘 ; and the functions ℎ𝑘 : R𝑛𝑘 × R𝑙𝑘 → R𝑚𝑘 are
used to express potentially nonlinear, non-convex inequality constraints. The index sets ℐ and
𝒩 are used to determine which variables are fixed to initial values 𝑧init and final values 𝑧final,
respectively; initial and final values can also be changed in real-time. Finally, lower and upper
bounds 𝑧𝑘 < 𝑧𝑘 on 𝑧𝑘 can be specified at every stage 𝑘; the matrix 𝐹𝑘 is a selection matrix that
may select certain coordinates in vector 𝑧𝑘 to be integer.

All real-time data is coloured in red. Additionally, when integer variables are modelled, they
need to be declared as real-time parameters. See Section Mixed-integer nonlinear solver.

To obtain a solver for this optimization problem using the FORCESPRO client, you need to
define all functions involved (𝑓𝑘, 𝑐𝑘, ℎ𝑘) along with the corresponding dimensions.

9.1.2 Continuous-time dynamics

Instead of having discrete-time dynamics as can be seen in Section 9.1.1, we also support using
continuous-time dynamics of the form:

�̇� = 𝑓(𝑥, 𝑢, 𝑝)

and then discretizing this equation by one of the standard integration methods. See Section
9.2.4 for more details.

9.1.3 Other variants

Not all elements in Section 9.1.1 have to be necessarily present. Possible variants include prob-
lems:

• where all functions are fixed at code generation time and do not need extra real-time
data 𝑝;

• with no lower (upper) bounds for variable 𝑧𝑘,𝑖, then 𝑧𝑖 ≡ −∞ (𝑧𝑖 ≡ +∞);

• without nonlinear inequalities ℎ;

• with 𝑁 = 1 (single stage problem), then the inter-stage equality can be omitted;

• with final equality, then the final stage cost function 𝑓𝑁 can be omitted;

Chapter 9. High-level Interface 93

FORCESPRO User Manual

• that optimize over the initial value 𝑧init and do not include the initial equality;

• that optimize over the final value 𝑧final and do not include the final equality;

• mixed-integer nonlinear programs, where some variables are declared as integers. See
Section Mixed-integer nonlinear solver for more information about the MINLP solver.

9.1.4 Function evaluations

The FORCESPRO NLP solver requires external functions to evaluate:

• the cost function terms 𝑓𝑘(𝑧𝑘) and their gradients ∇𝑓𝑘(𝑧𝑘),

• the dynamics 𝑐𝑘(𝑧𝑘) and their Jacobians ∇𝑐𝑘(𝑧𝑘), and

• the inequality constraints ℎ𝑘(𝑧𝑘) and their Jacobians ∇ℎ𝑘(𝑧𝑘).

The FORCESPRO code generator supports the following ways of supplying these functions:

1. Automatic C-code generation of these functions from MATLAB using a supported au-
tomatic differentiation (AD) tool, such as CasADi. This happens automatically in the back-
ground, as long as the AD tool is found on your system. By doing so, the user does not need
to adhere to any tool-specific syntax but can use standard MATLAB commands to define the
necessary functions instead (which are then automatically converted to match the speficics
of the chosen AD tool). This is the recommended way of getting started with FORCESPRO
NLP. See Section 9.2 to learn how to use this approach.

2. C-functions (source files). These can be hand-coded, or generated by any automatic dif-
ferentiation tool. See Section 9.5 for details on how to provide own function evaluations and
derivatives to FORCESPRO.

9.2 Expressing the optimization problem in code

When solving nonlinear programs of the type in Section 9.1.1, FORCESPRO requires the func-
tions 𝑓, 𝑐, ℎ and their derivatives (Jacobians) to be evaluated in each iteration. There are two
ways for accomplishing this: either implement all function evaluations in C by some other
method (by hand or by another automatic differentiation tool), or use an AD tool integrated
with FORCESPRO, such as the open-source package CasADi (see Automatic differentiation
tool for a list of all supported tools). This is the easiest option to quickly get started with solv-
ing NLPs, and it generates efficient code. However, if you prefer other AD tools, see Section
9.5 to learn how to provide your own derivatives to FORCESPRO NLP solvers. This section will
describe the CasADi-based approach in detail, using either the MATLAB or the Python client
of FORCESPRO. Please note that even though both the MATLAB and the Python client are
intended to behave largely identical, there are some differences between the two clients. For
details, refer to Differences between the MATLAB and the Python client.

9.2.1 Model Initialization

Model Initialization in Matlab

In the MATLAB high-level interface, the formulation of the optimization problem is given
through a simple structure array. In the following, we will describe the problem in such an ar-
ray named model. It is advisable to zero-initialize this variable at the beginning of your script
such that no values set in previous iterations of your script interfere with this run:

model = {}

94 Chapter 9. High-level Interface

http://www.casadi.org/
http://www.casadi.org/

FORCESPRO User Manual

Model Initialization in Python

In the high-level Python interface, optimization problems are described through objects of
different types, depending on the problem. The following classes are available:

• SymbolicModel - Allows you to describe your optimization problem using regular
Python functions. These functions will be evaluated symbolically by CasADi to create
optimized C code. Note that this model is meant to be used for nonlinear models. If you
wish to express a convex model symbolically, consider using the ConvexSymbolicModel
or forcing generation of a nonconvex solver by seting the option forcenonconvex to True.

• ExternalFunctionModel - Enables more flexibility in describing nonlinear problems by
allowing any external function to be used as objective function and constraints. This
requires C code or already compiled code (object files or shared libraries) from any lan-
guage. The approach using external function evaluations for your objective function and
constraints is described in External function evaluations in C, including the required call
signature of the callback function.

• ConvexSymbolicModel - FORCESPRO can generate different solvers for convex prob-
lems.

Whichever model you choose, it can be initialized with no arguments, or with a single argu-
ment denoting the number of stages 𝑁 in the problem:

import forcespro.nlp
model = forcespro.nlp.SymbolicModel(50)

Note that most symbolic problem descriptions will also require the Numpy and CasADi pack-
ages, so it is a good idea to import them at the beginning:

import numpy as np
import casadi

9.2.2 Dimensions

In order to define the dimensions of the stage variables 𝑧𝑖, the number of equality and in-
equality constraints and the number of real-time parameters use the following fields (prop-
erties) in the client:

Matlab

Python

model.N = 50; % length of multistage problem
model.nvar = 6; % number of stage variables
model.neq = 4; % number of equality constraints
model.nh = 2; % number of nonlinear inequality constraints
model.npar = 0; % number of runtime parameters

model.N = 50 # not required if already specified in initializer
model.nvar = 6 # number of stage variables
model.neq = 4 # number of equality constraints
model.nh = 2 # number of nonlinear inequality constraints
model.npar = 0 # number of runtime parameters

If the dimensions vary for different stages use arrays of length 𝑁 . See Section 9.2.7 for an
example.

Chapter 9. High-level Interface 95

FORCESPRO User Manual

9.2.3 Objective

The high-level interface allows you to define the objective function using a handle to a MAT-
LAB or Python function that evaluates the objective. This function is called with the variables
of one stage as its first argument, i.e. a vector of model.nvar entries. FORCESPRO will pro-
cess the given function symbolically and generate the necessary C code to be included in the
solver.

Matlab

Python

model.objective = @eval_obj; % handle to objective function

model.objective = eval_obj # eval_obj is a Python function

For instance, the function could be:

Matlab

Python

function f = eval_obj (z)
F = z(1);
s = z(2);
y = z(4);
f = -100*y + 0.1*F^2 + 0.01* s^2;

end

def eval_obj(z):
F = z[0]
s = z[1]
y = z[3]
return -100*y + 0.1*F**2 + 0.01*s**2

If the cost function varies for different stages use a cell array of function handles of length 𝑁
in MATLAB, or a list of function handles in Python. See Section 9.2.7 for an example.

Note: Python and MATLAB use different indexing bases. The first element of any variable
has index 1 in MATLAB, whereas it is accessed at offset 0 in Python!

The objective evaluation function can optionally accept an additional argument p which
serves as a run-time parameter. In order to be able to change the terms in the cost func-
tion during runtime, one can define the objective function as:

Matlab

Python

function f = eval_obj (z, p)
F = z(1);
s = z(2);
y = z(4);
f = -100*y + p(1)*F^2 + p(2)* s^2;

end

def eval_obj(z, p):
F = z[0]
s = z[1]

(continues on next page)

96 Chapter 9. High-level Interface

FORCESPRO User Manual

(continued from previous page)

y = z[3]
return -100*y + p[0]*F**2 + p[1]*s**2

The length of this additional parameter vector in each stage is given by model.npar.

9.2.4 Equalities

Discrete-time

For discrete-time dynamics, one can define a handle to a function evaluating 𝑐 as shown
below. The selection matrix𝐸 that determines which variables are affected by the inter-stage
equality must also be filled. For performance reasons, it is recommended to order variables
such that the selection matrix has the following structure:

Matlab

Python

model.eq = @eval_dynamics; % handle to inter-stage function
model.E = [zeros(4,2), eye(4)]; % selection matrix

model.eq = eval_dynamics # handle to inter-stage function
model.E = np.concatenate([np.zeros((4, 2)), np.eye(4)], axis=1) # selection matrix

If the equality constraint function varies for different stages use a cell array (or list in Python)
of function handles of length 𝑁 − 1, and similarly for 𝐸𝑘 . See Section 9.2.7 for an example.

Continuous-time

For continuous-time dynamics, FORCESPRO requires you to describe the dynamics of the
system in the following form:

�̇� = 𝑓(𝑥, 𝑢, 𝑝)

where 𝑥 are the states of the system, 𝑢 are the inputs and 𝑝 a vector of parameters, e.g. the
mass or inertia. The selection matrix 𝐸 determines which components of the stage variable
𝑧𝑖 are to be considered state 𝑥 or input 𝑢 in this representation.

For example, let’s assume that the system to be controlled has the dynamics:

�̇� = 𝑝1𝑥1𝑥2 + 𝑝2𝑢

In order to discretize the system for use with FORCESPRO we have to:

1. Implement the continuous-time dynamics as a function:

Matlab

Python

function xdot = continous_dynamics(x, u, p)
xdot = p(1)*x(1)*x(2) + p(2)*u;

end

def continuous_dynamics(x, u, p):
return p[0]*x[0]*x[1] + p[1]*u[0]

Chapter 9. High-level Interface 97

FORCESPRO User Manual

Note that in general the parameter vector p can be omitted if there are no parameters. You
can also implement short functions as anonymous function handles:

Matlab

Python

continous_dynamics_anonymous = @(x,u,p) p(1)*x(1)*x(2) + p(2)*u;

continuous_dynamics_anonymous = lambda x, u, p: p[0]*x[0]*x[1] + p[1]*u[0]

2. Tell FORCESPRO that you are using continuous-time dynamics by setting the
continuous_dynamics field of the model to a function handle to one of the functions above:

Matlab

Python

model.continuous_dynamics = @continuous_dynamics;

model.continuous_dynamics = continuous_dynamics

or, if you are using anonymous functions:

Matlab

Python

model.continuous_dynamics = @continuous_dynamics_anonymous;

model.continuous_dynamics = continuous_dynamics_anonymous

3. Use the selection matrix 𝐸 to link the stage variables 𝑧𝑖 with the states 𝑥 and inputs 𝑢 of the
continuous dynamics function:

Matlab

Python

model.E = [zeros(2, 1), eye(2)]

model.E = np.concatenate([np.zeros((2, 1)), np.eye(2)], axis=1)

Components of 𝑧𝑖 are considered as state variables 𝑥 according to the order prescribed by the
selection matrix. If an entire 𝑘-th column of the selection matrix is zero, the 𝑘-th component
of 𝑧𝑖 is not governed by a dynamic equation and thus considered as input 𝑢.

4. Choose one of the integrator functions from the Integrators section (the default is ERK4):

Matlab

Python

codeoptions.nlp.integrator.type = 'ERK2';
codeoptions.nlp.integrator.Ts = 0.1;
codeoptions.nlp.integrator.nodes = 5;

codeoptions.nlp.integrator.type = 'ERK2'
codeoptions.nlp.integrator.Ts = 0.1
codeoptions.nlp.integrator.nodes = 5

where the integrator type is set using the type field of the options struct codeoptions.nlp.
integrator. The field Tsdetermines the absolute time between two integration intervals, while

98 Chapter 9. High-level Interface

FORCESPRO User Manual

nodes defines the number of intermediate integration nodes within that integration interval.
In the example above, we use 5 steps to integrate for 0.1 seconds, i.e. each integration step
covers an interval of 0.02 seconds.

9.2.5 Initial and final conditions

The indices affected by the initial and final conditions can be set as follows:

Matlab

Python

model.xinitidx = 3:6; % indices affected by initial condition
model.xfinalidx = 5:6; % indices affected by final condition

model.xinitidx = range(2, 6) # indices affected by the initial condition
model.xfinalidx = range(4, 6) # indices affected by the final condition

Note: Python and MATLAB use different indexing bases. The first variable in a stage has
index 1 in MATLAB, whereas it is accessed at offset 0 in Python! Further note that Python’s
range does not include the upper limit, thus:

list(range(2, 6)) == [2, 3, 4, 5] # does not include upper limit

9.2.6 Inequalities

A function evaluating nonlinear inequalities can be provided in a similar way, for example:

Matlab

Python

function h = eval_const(z)
x = z(3);
y = z(4);
h = [x^2 + y^2;

(x+2)^2 + (y-2.5)^2];
end

def eval_const(z):
x = z[2]
y = z[3]
return np.array([x**2 + y**2;

(x+2)**2 + (y-2.5)**2])

Note: For Python installations with Numpy version 1.20 onwards it is advised to use CasADi ar-
rays and CasADi functions (where available) for the implementation of the functions assigned
to: model.objective, model.eq, model.ineq, model.continous_dynamics for the problem
formulation in order to ensure maximum compatibility between CasADi and the FORCE-
SPRO Python client.

The simple bounds and the nonlinear inequality bounds can have +inf and -inf elements,
but must be the same length as the field nvar and nh, respectively:

Chapter 9. High-level Interface 99

FORCESPRO User Manual

Matlab

Python

model.ineq = @eval_const; % handle to nonlinear constraints
model.hu = [9, +inf]; % upper bound for nonlinear constraints
model.hl = [1, 0.95^2]; % lower bound for nonlinear constraints
model.ub = [+5, +1, 0, 3, 2, +pi]; % simple upper bounds
model.lb = [-5, -1, -3, -inf, 0, 0]; % simple lower bounds

model.ineq = eval_const # handle to nonlinear constraints
model.hu = [9, +float('inf')] # upper bound for nonlinear constraints
model.hl = [1, 0.95**2] # lower bound for nonlinear constraints
model.ub = [+5, +1, 0, 3, 2, +np.pi] # simple upper bounds
model.lb = [-5, -1, -3, -float('inf'), 0, 0] # simple lower bounds

Note: While the FORCESPRO Python client does not require you to use numpy arrays, we
encourage their use for vector- and matrix-valued properties of the model, as it simplifies
calculations for the user. Therefore, any of the above properties can also be set to Numpy
arrays instead of lists. If lists are given, these are converted to Numpy arrays internally.

If the constraints vary for different stages, use cell arrays of length 𝑁 for any of the quantities
defined above. See Varying dimensions, parameters, constraints, or functions section for an
example.

Bounds model.lb, model.ub, model.hl and model.hu can be made parametric by leaving said
fields empty and using the model.lbidx, model.ubidx, model.hlidx and model.huidx fields re-
spectively to indicate on which variables/inequalities lower and upper bounds are present.
The numerical values will then be expected at runtime. The runtime parameters will be cre-
ated stage-wise for the above bounds and will have the names lb<n>, ub<n>, hl<n>, hu<n>where
<n> will be the 1-based stage number they belong it (padded with enough 0 based on the
largest stage) For example, to set parametric lower bounds on states 1 and 2, and parametric
upper bounds on states 2 and 3, use:

Matlab

Python

% Lower bounds are parametric (indices not mentioned here are -inf)
model.lbidx = [1 2]';

% Upper bounds are parametric (indices not mentioned here are +inf)
model.ubidx = [2 3]';

% lb and ub have to be empty when using parametric bounds
model.lb = [];
model.ub = [];

Lower bounds are parametric (indices not mentioned here are -inf)
model.lbidx = [0, 1]

Upper bounds are parametric (indices not mentioned here are +inf)
model.ubidx = [1, 2]

There is no need to specify model.lb or model.ub to empty lists if
model.lbidx or model.ubidx are set, and any non-empty value is disallowed.

and then specify the exact values at runtime through the fields lb01–lbN and ub01–ubN:

100 Chapter 9. High-level Interface

FORCESPRO User Manual

Matlab

Python

% Specify lower bounds
problem.lb01 = [0 0]';
problem.lb02 = [0 0]';
% ...

% Specify upper bounds
problem.ub01 = [3 2]';
problem.ub02 = [3 2]';
% ...

Specify lower bounds
problem["lb01"] = [0, 0]
problem["lb02"] = [0, 0]

Specify upper bounds
problem["ub01"] = [3, 2]
problem["ub02"] = [3, 2]

Tip: One could use problem.(sprintf('lb%02u',i)) in an i-indexed loop to set the parametric
bounds more easily in the MATLAB client. Similarly, the parametric bounds for the stages
can be set using problem["{:02d}".format(i+1)] in Python. Alternatively, consider using the
option stack_parambounds, described below.

If the model.lbidx and model.ubidx fields vary for different stages use cell arrays of length 𝑁 .
From Release 3.0.1, the parametric bounds can be stacked on one same array covering all
stages. To enable this behaviour, users need to set the following code-generation option:

Matlab

Python

codeoptions.nlp.stack_parambounds = 1;

codeoptions.nlp.stack_parambounds = True

This option is effective for both the PDIP_NLP and SQP_NLP solve methods and works with
bounds on variables and inequalities. At run-time, users can then write

Matlab

Python

% Lower and upper bounds stacked over all stages
problem.lb = [0 0 0 0 ...];
problem.ub = [3 2 3 2 ...];

Lower and upper bounds stacked over all stages
problem["lb"] = [0, 0, 0, 0, ...]
problem["ub"] = [3, 2, 3, 2, ...]

Alternatively, if you want to use the same bounds across all stages:

Matlab

Python

Chapter 9. High-level Interface 101

FORCESPRO User Manual

problem.lb = repmat([0, 0], 1, model.N);
problem.ub = repmat([3, 2], 1, model.N);

problem["lb"] = np.tile([0, 0], (model.N,))
problem["ub"] = np.tile([3, 2], (model.N,))

9.2.7 Variations

Varying dimensions, parameters, constraints, or functions

The example described above has the same dimensions, bounds and functions for the whole
horizon. One can define varying dimensions using arrays and varying bounds and functions
using MATLAB cell arrays or Python lists. For instance, to remove the first and second variables
from the last stage one could write the following:

Matlab

Python

for i = 1:model.N-1
model.nvar(i) = 6;
model.objective{i} = @(z) -100*z(4) + 0.1*z(1)^2 + 0.01*z(2)^2;
model.lb{i} = [-5, -1, -3, 0, 0, 0];
model.ub{i} = [+5 , +1, 0, 3, 2, +pi];
if i < model.N-1
model.E{i} = [zeros(4, 2), eye(4)];

else
model.E{i} = eye(4);

end
end

model.nvar(model.N) = 4;
model.objective{model.N} = @(z) -100*z(2);
model.lb{model.N} = [-3, 0, 0, 0];
model.ub{model.N} = [0, 3, 2, +pi];

model = forcespro.nlp.SymbolicModel(50) # to set values stage-wise, the model must␣
→˓be initialized this way

for i in range(0,model.N-1):
model.nvar[i] = 6
model.objective[i] = lambda z: -100*z[3] + 0.1*z[0]**2 + 0.01*z[1]**2
model.lb[i] = [-5, -1, -3, 0, 0, 0]
model.ub[i] = [+5 , +1, 0, 3, 2, +np.pi]
if i < model.N-2:
model.E[i] = np.concatenate([np.zeros(4, 2), np.eye(4)], axis=1)

else:
model.E[i] = np.eye(4)

model.nvar[-1] = 4
model.objective[-1] = lambda z: -100*z[1]
model.lb[-1] = [-3, 0, 0, 0]
model.ub[-1] = [0, 3, 2, +np.pi]

It is also typical for model predictive control problems (MPC) that only the last stage differs
from the others (excluding the initial condition, which is handled separately). Instead of defin-

102 Chapter 9. High-level Interface

FORCESPRO User Manual

ing cell arrays as above for all stages, FORCESPRO offers the following shorthand notations
that alter the last stage:

• nvarN: number of variables in last stage

• nparN: number of parameters in last stage

• objectiveN: objective function for last stage

• EN: selection matrix 𝐸 for last stage update

• nhN: number of inequalities in last stage

• ineqN: inequalities for last stage

Add any of these fields to the model struct/object to override the default values, which is to
make everything the same along the horizon. For example, to add a terminal cost that is a
factor 10 higher than the stage cost:

Matlab

Python

model.objectiveN = @(z) 10*model.objective(z);

model.objectiveN = lambda z: 10*model.objective(z)

Providing analytic derivatives

The algorithms inside FORCESPRO need the derivatives of the functions describing the ob-
jective, equality and inequality constraints. The code generation engine uses algorithmic dif-
ferentiation (AD) to compute these quantities. Instead, when analytic derivatives are available,
the user can provide them using the fields model.dobjective, model.deq, and model.dineq.

Note that the user must be particularly careful to make sure that the provided functions and
derivatives are consistent, for example:

Matlab

Python

model.objective = @(z) z(3)^2;
model.dobjective = @(z) 2*z(3);

model.objective = lambda z: z[2]**2
model.dobjective = lambda z: 2*z[2]

The code generation system will not check the correctness of the provided derivatives.

9.2.8 Single precision callbacks

Evaluating objective function, dynamics and constraints as well as their respective deriva-
tives may take a significant part of the overall solution time (both total and per iteration). In
such situations solution time and memory consumption may be sped up by evaluating those
functions in single, rather than double precision arithmetic. This can be done by specifying

Matlab

Python

codeoptions.callback_floattype = 'float';

Chapter 9. High-level Interface 103

FORCESPRO User Manual

not yet supported

Note that this will allow to run the NLP solver in mixed-precision arithmetic, where the call-
backs are evaluated in single precision, but the overall algorithm in double precision. In order
for this to work well, all callbacks functions need to be numerically well-posed and overall
accuracy requirements of the solution must not be too high. In particular, when using that
feature, you may need to reduce some of the accuracy settings (such as codeoptions.nlp.
TolStat) by one or two orders of magnitude, see Accuracy requirements.

Note: Single precision callbacks are currently supported for legacy and chainrule integrators,
but not yet for VDE integrators. Also, this features is currently only available via the Matlab
client.

9.3 Generating a solver

In addition to the definition of the NLP, solver generation requires an (optional) set of options
for customization (see the Solver Options section for more information). Using the default
solver options we generate a solver using:

Matlab

Python

% Get the default solver options
codeoptions = getOptions('FORCESNLPsolver');

% Generate solver
FORCES_NLP(model, codeoptions);

Get the default solver options
options = forcespro.CodeOptions('FORCESNLPsolver')

Generate solver for previously initialized model
solver = model.generate_solver(options)

As the solver is generated, several files are downloaded into the current working directory
of the calling script, including the compiled solver itself and MATLAB/Python interfaces for
calling it.

Note: In the Python client, generate_solver() returns a solver object. This object can be used
to call the solver. To get a solver object for a previously generated solver in some directory
/path/to/solver, use:

import forcespro.nlp
solver = forcespro.nlp.Solver.from_directory('/path/to/solver')

9.3.1 Declaring outputs

By default, the solver returns the solution vector for all stages as multiple outputs. Alterna-
tively, the user can pass a third argument to the function FORCES_NLP with an array that speci-
fies what the solver should output. For instance, to define an output, named u0, to be the first
two elements of the solution vector at stage 1, use the following commands:

104 Chapter 9. High-level Interface

FORCESPRO User Manual

Matlab

Python

output1 = newOutput('u0', 1, 1:2);
FORCES_NLP(model, codeoptions, output1);

output_1 = ("u0", 0, [0, 1], "")
model.generate_solver(options, [output_1])

Additionally, you can request that the solver returns the solution vectors for all different stages
“stacked” together into a single vector, say called sol, by using the following commands:

Matlab

Python

output1 = newOutput('sol');
FORCES_NLP(model, codeoptions, output1);

output1 = ("sol", [], [])
model.generate_solver(options, [output1])

Important: When using the MINLP solver and defining outputs, all integer variables need to
be specified as custom outputs.

The dual variables at the solution returned by FORCESPRO provide useful information on
the problem sensitivity. They can be exported from the nonlinear solver as well by giving the
maps2const field one of the following values:

• ‘nl_eq_dual’ for the dual variables associated to equality constraints

• ‘nl_lb_var_dual’ for the dual variables associated to lower bounds on variables

• ‘nl_ub_var_dual’ for the dual variables associated to upper bounds on variables

• ‘nl_ip_ineq_dual’ for the dual variables associated to nonlinear inequalities

• ‘nl_ineq_slack’ for the dual variables associated to slacks on nonlinear inequalities.

An example of exporting the marginals associated to nonlinear equalities is shown in the code
snippet below.

outputs(4) = newOutput('dual_eq0', 1:model.N, 1:2, 'nl_eq_dual');

9.4 Calling the solver

After code generation has been successful, one can obtain information about the real-time
data needed to call the generated solver by typing:

Matlab

Python

help FORCESNLPsolver

Assuming `solver` is the return value of a `model.generate_solver()` call
solver.help()

In Python, a previously generated solver can be loaded as follows:

Chapter 9. High-level Interface 105

FORCESPRO User Manual

import forcespro.nlp
solver = forcespro.nlp.Solver.from_directory("/path/to/generated/solver/")
solver.help()

9.4.1 Initial guess

The FORCESPRO NLP solver solves NLPs to local optimality, hence the resulting optimal so-
lution depends on the initialization of the solver. One can also choose another initialization
point when a better guess is available. The following code sets the initial point to be in the
middle of all bounds:

Matlab

Python

x0i = model.lb +(model.ub - model.lb)/2;
x0 = repmat(x0i', model.N, 1);
problem.x0 = x0;

xi = (model.lb + model.ub) / 2 # assuming lb and ub are numpy arrays
x0 = np.tile(xi, (model.N,))
problem = {"x0": x0}

9.4.2 Initial and final conditions

If there are initial and/or final conditions on the optimization variables, the solver will expect
the corresponding runtime fields:

Matlab

Python

problem.xinit = model.xinit;
problem.xfinal = model.xfinal;

problem = {"xinit": np.array([1, 2, 3]),
"xfinal": np.array([4, 5, 6])}

Note that the Python client does not allow setting model.xinit or model.xfinal properties, as
those are run-time parameters not needed at solver generation time.

9.4.3 Real-time parameters

Whenever there are any runtime parameters defined in the problem, i.e. the field npar is not
zero, the solver will expect the following field containing the parameters for all the 𝑁 stages
stacked in a single vector:

Matlab

Python

problem.all_parameters = repmat(1.0, model.N, 1);

problem["all_parameters"] = np.tile(1.0, (model.N,))

106 Chapter 9. High-level Interface

FORCESPRO User Manual

9.4.4 Tolerances as real-time parameters

From FORCESPRO 2.0 onwards, the NLP solver tolerances can be made real-time parameters,
meaning that they do not need to be set when generating the solver but can be changed at
run-time when calling the generated solver. The code-snippet below shows how to make the
tolerances on the gradient of the Lagrangian, the equalities, the inequalities and the comple-
mentarity condition parametric. Essentially, when the tolerances are declared nonpositive at
code-generation, the corresponding run-time parameter is created in the solver.

Matlab

Python

codeoptions.nlp.TolStat = -1; % Tolerance on gradient of Lagrangian
codeoptions.nlp.TolEq = -1; % Tolerance on equality constraints
codeoptions.nlp.TolIneq = -1; % Tolerance on inequality constraints
codeoptions.nlp.TolComp = -1; % Tolerance on complementarity

codeoptions.nlp.TolStat = -1 # Tolerance on gradient of Lagrangian
codeoptions.nlp.TolEq = -1 # Tolerance on equality constraints
codeoptions.nlp.TolIneq = -1 # Tolerance on inequality constraints
codeoptions.nlp.TolComp = -1 # Tolerance on complementarity

Once the tolerance has been declared nonpositive and the solver has been generated, the
corresponding parameter can be set at run-time as follows:

Matlab

Python

problem.ToleranceStationarity = 1e-1;
problem.ToleranceEqualities = 1e-1;
problem.ToleranceInequalities = 1e-1;
problem.ToleranceComplementarity = 1e-1;

problem["ToleranceStationarity"] = 1e-1
problem["ToleranceEqualities"] = 1e-1
problem["ToleranceInequalities"] = 1e-1
problem["ToleranceComplementarity"] = 1e-1

Tip: We do not recommend changing the tolerance on the complementarity condition since
it is used internally to update the barrier parameter. Hence loosening it may hamper the
solver convergence.

9.4.5 Exitflags and quality of the result

Once all parameters have been populated, the MEX interface of the solver can be used to
invoke it:

Matlab

Python

[output, exitflag, info] = FORCESNLPsolver(problem);

output, exitflag, info = solver.solve(problem)

Chapter 9. High-level Interface 107

FORCESPRO User Manual

The possible exitflags are documented in Exitflag values. The exitflag should always be
checked before continuing with program execution to avoid using spurious solutions later
in the code. Check whether the solver has exited without an error before using the solution.
For example, in MATLAB, we suggest to use an assert statement:

Matlab

Python

assert(exitflag == 1, 'Some issue with FORCESPRO solver');

assert exitflag == 1, "Some issue with FORCESPRO solver"

Besides the exitflag, the solver also returns an information structure containing detailed KPIs
on the solver performance. All its entries are listed and explained in Table 9.1. Those values
may also be useful in case the solver exitflag has been 0, which means the solver did not
fail but reached the maximum number of iterations. In that case, one should at least check
whether the “solution” returned is sufficiently feasible. This can be done by examining res_eq
and res_ineq, respectively, to check whether equality and inequality constraints are satisfied
up to a sufficiently small tolerance. The exact tolerances to check may be strongly application
dependent.

Note: Applying a premature “solution” returned along with an exitflag of 0 to control your
system may have undesired effects to the behaviour of that system. Only do so if you fully
understand what you are doing.

Table 9.1: Info struct entries
Fieldname Description
it Number of solver iterations that led to this result
res_eq Maximum norm of equality constraint residual
res_ineq Maximum norm of inequality constraint residual
rsnorm Maximum norm of stationarity condition
rcompnorm Maximum norm of violations of the complementarity conditions
pobj Primal objective value (as provided by the user)
mu Duality measure
solvetime Time needed to run the solver (wall clock time)
fevalstime Time needed just for function evaluations of all user callbacks inside the

solver (wall clock time)
solver_id Solver ID of generated solver

9.5 External function evaluations in C

This approach allows the user to integrate existing efficient C implementations to evaluate the
required functions and their derivatives with respect to the stage variable. This gives the user
full flexibility in defining the optimization problem. In this case, the functions do not neces-
sarily have to be differentiable, although the convergence of the algorithm is not guaranteed
if they are not. When following this route the user does not have to provide MATLAB code
to evaluate the objective or constraint functions. However, the user is responsible for making
sure that the provided derivatives and function evaluations are coherent. The FORCESPRO
NLP code generator will not check this.

9.5.1 Interface

108 Chapter 9. High-level Interface

FORCESPRO User Manual

Expected function signature

There are two ways in which a user can supply custom functions written in C:

• Either she can supply all functions (model.objective, model.eq, model.ineq etc.)

• Or she can supply one or a few of these together with its differential/Jacobian.

Depending on the case, the user will have to supply different information when generating
a FORCESPRO solver.

When supplying all functions, the user will have supply a single C function having the follow-
ing signature:

int myfunctions (
double *x, /* primal vars */
double *y, /* eq. constraint multiplers */
double *l, /* ineq . constraint multipliers */
double *p, /* runtime parameters */
double *f, /* objective function (incremented in this function) */
double *nabla_f , /* gradient of objective function */
double *c, /* dynamics */
double *nabla_c , /* Jacobian of the dynamics (column major) */
double *h, /* inequality constraints */
double *nabla_h , /* Jacobian of inequality constraints (column major) */
double *H, /* Hessian (column major) */
int stage, /* stage number (0 indexed) */
int iteration, /* Solver iteration count */
int threadID /* Thread id */

)

If instead the user wants to supply just a single function she will have to supply a single C
function having the following signature:

void function (
const double * const x, /* primal vars */
const double * const p, /* runtime parameters */
double * const zeroOrderFcn, /* Zero order function */
double * const firstOrderFcn , /* first order Fcn */
const int stage, /* stage number (0 indexed) */
const int threadID /* thread number */

)

where zeroOrderFcn and firstOrderFcn denote the function which the user wants to supply,
together with its differential/Jacobian respectively. E.g. if the user were to add the objective
function and its differential externally, the function might look as follows:

void objective (
const double * const x, /* primal vars */
const double * const p, /* runtime parameters */
double * const obj, /* objective function */
double * const nabla_obj, /* jacobian of objective fcn */
const int stage, /* stage number (0 indexed) */
const int threadID /* thread number */

)

Note: External C-functions should have the same name as the file it is contained in, minus
the file extension. E.g. in the above example the source file containing the definition of the
function objective would have to have the name objective.c. If all functions are provided as

Chapter 9. High-level Interface 109

FORCESPRO User Manual

external C functions through the FORCESPRO Python client, then one can provide a different
name for the function and the file.

Custom data structures as parameters

If you have an advanced data structure that holds the user-defined run-time parameters,
and you do not want to serialize it into an array of doubles to use the interface above, you can
invoke the option:

codeoptions.customParams = 1;

options.customParams = 1

When doing this, it is important to note that run-time parameters can only be passed to ex-
ternally provided functions. In particular, if some but not all function evaluations are provided
externally, one will have to set model.npar = 0. When using custom parameters, if all functions
are provided externally, the expected function signature is:

int myfunctions (
double *x, /* primal vars */
double *y, /* eq. constraint multiplers */
double *l, /* ineq . constraint multipliers */
void *p, /* runtime parameters (passed as void pointer) */
double *f, /* objective function (incremented in this function) */
double *nabla_f , /* gradient of objective function */
double *c, /* dynamics */
double *nabla_c , /* Jacobian of the dynamics (column major) */
double *h, /* inequality constraints */
double *nabla_h , /* Jacobian of inequality constraints (column major) */
double *H, /* Hessian (column major) */
int stage, /* stage number (0 indexed) */
int iteration, /* Solver iteration count */
int threadID /* Thread id */

)

If instead only some of the functions are provided, the expected function signature of these
is

void function (
const double * const x, /* primal vars */
void * const p, /* runtime parameters passed as void pointer */
double * const zeroOrderFcn, /* Zero order function */
double * const firstOrderFcn , /* first order Fcn */
const int stage, /* stage number (0 indexed) */
const int threadID /* thread number */

)

At run time you can then pass arbitrary data structures to your own function by setting the
pointer in the params struct:

myData p; /* define your own parameter structure */
/* ... */ /* fill it with data */

/* Set parameter pointer to your data structure */
mySolver_params params; /* Define solver parameters */
params.customParams = &p;

(continues on next page)

110 Chapter 9. High-level Interface

FORCESPRO User Manual

(continued from previous page)

/* Call solver (assuming everything else is defined) */
mySolver_solv(¶ms, &output, &info, stdout, &external_func);

Note: Setting customParams to 1 will disable building high-level interfaces. Only C header- and
source files will be generated. As a consequence, if CasADi is used to generate some of the
function evaluations, the generated source code will have to be compiled by the user.

Note: When using custom parameters, generating callback code automatically is only sup-
ported for CasADi 3.5.x only.

9.5.2 Supplying function evaluation information

In MATLAB, if the user wants to supply all functions externally she can let the code generator
know about the path to the C files implementing the necessary function as follows:

model.extfuncs = 'C/myfunctions.c';

Alternatively she could supply either one of the functions model.objective, model.eq or model.
ineq together with its differential by specifying the path to the corresponding C source file in
the corresponding field of model.extfuncs as follows:

model.extfuncs.objective = 'C/myobjective.c'; % adding model.objective externally %
model.extfuncs.dynamics = 'C/mydynamics.c'; % adding model.eq externally %
model.extfuncs.inequalities = 'C/myinequalities.c'; % adding model.ineq externally %

As noted above, FORCESPRO derives the function name used for the callback from the file
name; the function must therefore have the same name as the file in which it is contained.

In Python, if the user wishes to add ALL functions externally she would use a ExternalFunc-
tionModel as follows:

model = forcespro.nlp.ExternalFunctionModel(50)
model.add_auxiliary(["helper_functions.c", "compiled_helper_functions.obj"])
model.set_main_callback("myfunctions.c", function="myfunctions")

Herein, the add_auxiliary() method is used to add any helper C source files or object files
that should be compiled and linked against, and the set_main_callback() function is used to
define the path to a C source file or compiled object file, as well as the name of an exported
function that conforms to the call signature given above. This function will be used to evaluate
any nonlinear constraints and the objective function.

Alternatively, in order to add a single function externally the user would use the Symbol-
icModel and add the C source files containing code for the external functions through
model.extfuncs as follows:

model = forcespro.nlp.SymbolicModel(50)
model.extfuncs.objective = "myobjective.c"
model.extfuncs.dynamics = "mydynamics.c"
model.extfuncs.inequalities = "myinequalities.c"
model.add_c_source("extra_source.c")

where the extra_source.c are additional C source files needed for evaluating some or all of the
external functions.

Chapter 9. High-level Interface 111

FORCESPRO User Manual

9.5.3 Rules for function evaluation code

The contents of the function have to follow certain rules. We will use the following example
to illustrate them:

/* cost */
if (f)
{ /* notice the increment of f */

(*f) += -100*x[3] + 0.1* x[0]*x[0] + 0.01*x [1]*x [1];
}
/* gradient - only nonzero elements have to be filled in */
if (nabla_f)
{

nabla_f [0] = 0.2*x[0];
nabla_f [1] = 0.02*x[1];
nabla_f [3] = -100;

}

/* eq constr */
if (c)
{

vehicle_dyanmics (x, c);
}
/* jacobian equalities (column major) */
if (nabla_c)
{

vehicle_dyanmics_jacobian (x, nabla_c);
}

/* ineq constr */
if (h)
{

h[0] = x [2]*x[2] + x[3]*x [3];
h[1] = (x[2]+2)*(x[2]+2) + (x[3] -2.5)*(x[3] -2.5);

}
/* jacobian inequalities (column major)
- only non - zero elements to be filled in */
if (nabla_h)
{

/* column 3 */
nabla_h [4] = 2*x [2];
nabla_h [5] = 2*x[2] + 4;
/* column 4 */
nabla_h [6] = 2*x [3];
nabla_h [7] = 2*x[3] - 5;

}

Notice that every function evaluation is only carried out if the corresponding pointer is not
null. This is used by the FORCESPRO NLP solver to call the same interface with different
pointers depending on the functions that it requires.

9.5.4 Matrix format

Matrices are assumed to be stored in dense column major format. However, only the non-
zero components need to be populated, as FORCESPRO NLP makes sure that the arrays are
initialized to zero before calling this interface.

112 Chapter 9. High-level Interface

FORCESPRO User Manual

9.5.5 Multiple source files

The use of multiple C files is also supported. In the example above, the functions dynamics and
dynamics_jacobian are defined in another file and included as external functions using:

extern void dynamics (double *x, double *c);
extern void dynamics_jacobian (double *x, double *J);

In MATLAB, to let the code generator know about the location of these other files use a string
with spaces separating the different files. In Python, use the add_auxiliary() method:

Matlab

Python

codeoptions.nlp.other_srcs = 'C/dynamics.c';

model.add_auxiliary('C/dynamics.c')

9.5.6 Stage-dependent functions

Whenever the cost function in one of the stages is different from the standard cost function
𝑓 , one can make use of the argument stage to evaluate different functions depending on the
stage number. The same applies to all other quantities.

9.5.7 External function return values

By default, FORCESPRO does not check the return value of the main callback function. If you
write your external function so that it returns:

• a non-negative value in case of success,

• a negative value between -99 and -1 in case of failure,

you can set the FORCESPRO code option codeoptions.callback_check_status = 1 to make
the solver check these return values and stop should a value be negative. In the latter case,
the solver returns ret - 200, given ret as the external function return value. Refer to section
Exitflag values for a full description of the relevant exitflags. If the callbacks are evaluated
concurrently (which is the case if codeoptions.parallel > 0), the solver exitflag refers to the
most negative return value from external function evaluations.

Note: You need to verify yourself the correctness of the external function signature (as doc-
umented here) as this can’t be verified automatically.

9.6 Calling the nonlinear functions from Matlab or Python

From FORCESPRO version 5.0.1 onwards it is possible to evaluate the nonlinear functions and
their derivatives directly in Matlab or Python. This can be very useful for debugging a FORCE-
SPRO solver. This in particular can be useful when calling the generated solver returns an
exitflag −6, −8 or −10. For help on how to do this, see Real-time SQP Solver: Robotic Arm
Manipulator (MATLAB & Python) and Issues when running the solver.

Chapter 9. High-level Interface 113

FORCESPRO User Manual

9.6.1 Calling the nonlinear functions from MATLAB

When generating a FORCESPRO solver one can request the FORCESPRO client to also gener-
ate a MEX entry point to any of the nonlinear functions (equality constraints, inequality con-
straints and objective function) so that one can evaluate these along with their derivatives
directly in MATLAB. This is done via the following three options:

• dynamics: In order to generate a MEX interface for the equality constraints, set
codeoptions.MEXinterface.dynamics = 1.

• inequalities: In order to generate a MEX interface for the inequality constraints, set
codeoptions.MEXinterface.inequalities = 1.

• objective: In order to generate a MEX interface for the objective function, set
codeoptions.MEXinterface.objective = 1.

The generated MEX entry point carries the name <solver name>_dynamics, <solver
name>_inequalities or <solver name>_objective depending on the case.

The first argument to each of these generated MEX entry points is the primal variable 𝑧𝑘 and
the second argument is the real-time parameter 𝑝𝑘 (see Canonical problem for discrete-time
dynamics), both passed as column vectors. Additionally a third argument can be passed,
which indicates the stage (1-based) at which the function should be evaluated. Each of the
generated MEX entry points output two variables: The first is the constraint/objective eval-
uated at the supplied point and the second is its jacobian with repect to 𝑧𝑘 . E.g. in order
to generate a solver named FORCESsolver and generate a MEX entry point for the inequality
constraints, one would proceed as follows:

model = getModel();
codeoptions = getOptions('FORCESsolver');
codeoptions.MEXinterface.inequalities = 1;
FORCES_NLP(model, codeoptions);

Now one can evaluate the inequality constraints on stage 8 at the point 𝑧8 = (4.0, 3.0, 2.4)𝑇 with
real-time parameters given by 𝑝8 = (3.4, 2.1)𝑇 by doing

z = [4.0; 3.0; 2.4];
p = [3.4; 2.1];
ineq, jacineq = FORCESsolver_inequalities(z,p,8);

which stores the values of the inequality constraints in ineq and their jacobian in jacineq.

Note: If there are no real-time parameters one simply passes an empty array: ineq, jacineq
= FORCESsolver_inequalities(z,[],8)

9.6.2 Calling the nonlinear functions from Python

When generating a solver one obtains a solver object

solver = model.generate_solver(options)

or

import forcespro.nlp
solver = forcespro.nlp.Solver.from_directory('/path/to/solver')

and one can directly evaluate any of the nonlinear functions (equality constraints, inequalities
or objective function) via the solver object’s methods. The methods for doing so are dynamics,
ineq and objective. Each of these functions take as a first input the primal variable 𝑧𝑘 and the

114 Chapter 9. High-level Interface

FORCESPRO User Manual

real-time parameter 𝑝𝑘 as a second input, if the problem formulation has real-time parame-
ters (see Canonical problem for discrete-time dynamics). All of these inputs are expected to
be passed as numpy arrays. Recall that the way in which states and inputs are “organized” into
𝑧𝑘 is determined by model.E. Additionally a stage input can be given in order to compute the
dynamics at a given stage (it is not necessary to supply this argument if the same dynamics
are used throughout the entire horizon). This stage input should give the 0-based number
of the corresponding stage. The first output of each of these function is the evaluated con-
straint/objective and the second output is the derivative with respect to 𝑧𝑘 . E.g. in order to
evaluate the equality constraints at stage number 7 on the primal variable 𝑧8 = (4.0, 3.0, 2.4)𝑇

in a formulation where there are no real-time parameters, one would do as follows:

import numpy as np
import forcespro.nlp

solver = forcespro.nlp.Solver.from_directory('/path/to/solver')
z = np.array([4.0, 3.0, 2.4])
c, jacc = solver.dynamics(z, stage=7)

This stores the value of the equality constraints in the numpy array c and its jacobian in the
numpy array jacc.

9.7 Mixed-integer nonlinear solver

From FORCESPRO 1.8.0, mixed-integer nonlinear programs (MINLPs) are supported. This
broad class of problems encompasses all nonlinear programs with some integer decision
variables.

This interface is provided with Variant L of FORCESPRO.

9.7.1 Writing a mixed-integer model

In order to use this feature, the user has to declare lower and upper bounds on all variables
as parametric, as shown in the code below.

Matlab

Python

model.lb = [];
model.ub = [];

model.lbidx = range(0, model.nvar)
model.ubidx = range(0, model.nvar)

The user is then expected to provide lower and upper bounds as run-time parameters.
FORCESPRO switches to the MINLP solver as soon as some variables are declared as inte-
gers in any stage. This information can be provided to FORCESPRO via the intidx array at
every stage. An example is shown below.

Matlab

Python

%% Add integer variables to existing nonlinear model
for s = 1:5

model.intidx{s} = [4, 5, 6];
end

Chapter 9. High-level Interface 115

FORCESPRO User Manual

Add integer variables to existing nonlinear model
for s in range(0, 5):

model.intidx[s] = [3, 4, 5]

In the above code snippet, the user declares variables 4, 5 and 6 (3, 4 and 5 in Python’s zero-
based indexing) as integers from stage 1 to 5 (stages 0 to 4 in Python’s zero-based indexing).
The values that can be taken by an integer variable are derived from its lower and upper
bounds. For instance, if the variable lies between -1 and 1, then it can take integer values -1,
0 or 1. If a variable has been declared as integer and does not have lower or upper bounds,
FORCESPRO raises an exception during code generation. Stating that a variable has lower
and upper bounds should be done via the arrays lbidx and ubidx. For instance, in the code
below, variables 1 to 6 (0 to 5 in Python) in stage 1 (0) have lower and upper bounds, which are
expected to be provided at run-time.

Matlab

Python

model.lbidx{1} = 1 : 6;
model.ubidx{1} = 1 : 6;

model.lbidx[0] = range(0, 6)
model.ubidx[0] = range(0, 6)

The FORCESPRO MINLP algorithm is based on the well-known branch-and-bound algorithm
but comes with several customization features which generally help for improving perfor-
mance on some models by enabling the user to provide application specific knowledge into
the search process. At every node of the search tree, the FORCESPRO nonlinear solver is called
in order to compute a solution of a relaxed problem. The generated MINLP solver code can
be customized via the options described in Table 9.2, which can be changed before running
the code generation.

One of the salient features of the MINLP solver is that the branch-and-bound search can be
run in parallel on several threads. Therefore the search is split in two phases. It starts with
a sequential branch-and-bound and switches to a parallelizable process when the number
of nodes in the queue is sufficiently high. The node selection strategy can be customized in
both phases, as described in Table 9.2.

Table 9.2: FORCESPRO MINLP solver options
Code generation setting Values Default
minlp.int_gap_tol Any value ≥ 0 0.001
minlp.max_num_nodes Any value ≥ 0 10000
minlp.seq_search_strat 'BEST_FIRST', 'BREADTH_FIRST 'DEPTH_FIRST' 'BEST_FIRST'
minlp.par_search_strat 'BEST_FIRST', 'BREADTH_FIRST', 'DEPTH_FIRST' 'BEST_FIRST'
minlp.max_num_threads Any nonnegative value preferably smaller than 8 4
minlp.output_relaxation 0 or 1 0

• The minlp.int_gap_tol setting corresponds to the final optimality tolerance below which
the solver is claimed to have converged. It is the difference between the objective incum-
bent, which is the best integer feasible solution found so far and the lowest lower bound.
As the node problems are generally not convex, it can be expected to become negative.
FORCESPRO claims convergence to a local minimum only when the integrality gap is
nonnegative and below the tolerance minlp.int_gap_tol.

• The minlp.max_num_nodes setting is the maximum number of nodes which can be ex-
plored during the search.

• The minlp.seq_search_strat setting is the search strategy which is used to select candi-
date nodes during the sequential search phase.

116 Chapter 9. High-level Interface

FORCESPRO User Manual

• The minlp.par_search_strat setting is the search strategy which is used to select candi-
date nodes during the parallelizable search phase.

• The minlp.max_num_threads setting is the maximum number of threads allowed for a par-
allel search. The actual number of threads on which the branch-and-bound algorithm
can be run can be set as a run-time parameter, as described below.

• The minlp.output_relaxation setting enables users to export the primal outputs of the
root relaxation. With this option set to 1, the server automatically generates one addi-
tional output for every defined output. The name of the root relaxation output is the
name of the output followed by _relax.

Note: MINLP formulations are currently not supported on MacOS. Moreover, they cannot
be used in combination with an SQP algorithm (see Sequential quadratic programming
algorithm) nor with CasADi MX expressions (see Automatic differentiation expression class).

The FORCESPRO MINLP solver also features settings which can be set at run-time. These are
the following:

• minlp.numThreadsBnB, the number of threads used to parallelize the search. Its default
value is 1, if not provided by the user.

• minlp.solver_timeout, the maximum amount of time allowed for completing the search.
Its default value is 1.0 seconds, if not set by the user.

• minlp.parallelStrategy, the method used for parallelizing the mixed-integer search
(from FORCESPRO 1.9.0). Value 0 (default) corresponds to a single priority queue shared
between threads. Value 1 corresponds to having each thread managing its own priority
queue.

9.7.2 Mixed-integer solver customization via user callbacks

For advanced users, the mixed-integer branch-and-bound search can be customized after
the rounding and the branching phases. In the rounding phase, an integer feasible solution
is computed after each relaxed problem solve. The user is allowed to modify the rounded so-
lution according to some modelling requirements and constraints. This can be accomplished
via the postRoundCallback_template.c file provided in the FORCESPRO client. This callback is
applied at every stage in a loop and updates the relaxed solution stage-wise. It needs to be
provided before code generation, as shown in the following code snippet.

Matlab

Python

%% Add post-rounding callback to existing model
postRndCall = fileread('postRoundCallback_template.c'); % The file name can be␣
→˓changed by the user
model.minlpPostRounding = postRndCall;

with open('postroundCallback_template.c') as f:
model.minlpPostRounding = f.read()

The branching process can be customized in order to discard some nodes during the search.
To do so, the user is expected to overwrite the file postBranchCallback_template.c and pass it
to FORCESPRO before generating the MINLP solver code.

Matlab

Python

Chapter 9. High-level Interface 117

FORCESPRO User Manual

%% Add as post-branching callbacks as you want
postBranchCall_1 = fileread('postBranchCallback_template_1.c');
postBranchCall_2 = fileread('postBranchCallback_template_2.c');
postBranchCall_3 = fileread('postBranchCallback_template_3.c');
model.minlpPostBranching{1} = postBranchCall_1;
model.minlpPostBranching{2} = postBranchCall_2;
model.minlpPostBranching{3} = postBranchCall_3;

Add as post-branching callbacks as you want
with open('postBranchCallback_template_1.c') as f:

model.minlpPostBranching[0] = f.read()
with open('postBranchCallback_template_2.c') as f:

model.minlpPostBranching[1] = f.read()
with open('postBranchCallback_template_3.c') as f:

model.minlpPostBranching[2] = f.read()

In each of those callbacks, the user is expected to update the lower and upper bounds of
the sons computed during branching given the index of the stage in which the branched
variables lies, the index of this variable inside the stage and the relaxed solution at the parent
node.

9.7.3 Providing a guess for the incumbent

Internally, the mixed-integer branch-and-bound computes an integer feasible solution by
rounding. Moreover, since version 1.9.0, users are allowed to provide an initial guess for the
incumbent. At code-generation, the following options need to be set:

• minlp.int_guess, which tells whether an integer feasible guess is provided by the user
(value 1). Its default value is 0.

• minlp.int_guess_stage_vars, which specifies the indices of the integer variables that are
user-initialized within one stage (MATLAB based indexing). If minlp.int_guess = 1, a pa-
rameter int_guess needs to be set at every stage. An example can be found there Mixed-
integer nonlinear solver: F8 Crusader aircraft.

Another important related option is minlp.round_root. If set to 1, the solution of the root re-
laxation is rounded and set as incumbent if feasible. Its default value is 1. The mixed-integer
solver behaviour differs depending on the combinations of options. The different behaviours
are listed below.

• If minlp.int_guess = 0 and minlp.round_root = 1, then the solution of the root relaxation
is taken as incumbent (if feasible). This is the default behaviour.

• If minlp.int_guess = 1 and minlp.round_root = 0, then the incumbent guess provided
by the user is tested after the root solve. If feasible, it is taken as incumbent. Note that
the user is allowed to provide guesses for a few integers per stage only. In this case, the
other integer variables are rounded to the closest integer.

• If minlp.int_guess = 1 and minlp.round_root = 1, then the rounded solution of the root
relaxation and the user guess are compared. The best integer feasible solution in terms
of primal objective is then taken as incumbent.

This feature is illustrated in Example Mixed-integer nonlinear solver: F8 Crusader aircraft.
The ability of providing an integer guess for the incumbent is a key feature to run the mixed-
integer solver in a receding horizon setting.

118 Chapter 9. High-level Interface

FORCESPRO User Manual

9.8 Sequential quadratic programming algorithm

The FORCESPRO real-time sequential quadratic programming (SQP) algorithm allows one
to solve problems of the type specified in the section High-level Interface. The algorithm
iteratively solves a convex quadratic approximations of the (generally non-convex) problem.
Moreover, the solution is stored internally in the solver and used as an initial guess for the next
time the solver is called. This and other features enables the solver to have fast solvetimes
(compared to the interior point method), particularly suitable for MPC applications where
the sampling time or the computational power of the hardware is small.

Important: The SQP algorithm currently only supports affine inequalities. This means that
all the inequality functions ℎ𝑘, 𝑘 = 1, ..., 𝑁 from (9.1.1) must be affine functions of the variable
𝑧𝑘 (not necessarily of 𝑝𝑘).

Moreover, the SQP algorithm currently does not support problems comprising final equality
constraints (specified via model.xfinalidx).

9.8.1 How to generate a SQP solver

To generate a FORCESPRO sequential quadratic programming real-time iteration solver one
sets

Matlab

Python

codeoptions.solvemethod = 'SQP_NLP';

codeoptions.solvemethod = "SQP_NLP"

(see Generating a solver). In addition to the general code options specified in the previous
section here are some of the important code options one can use to customize the generated
SQP solver.

By default the FORCESPRO SQP solver solves a single convex quadratic approximation.
This accomplishes a fast solvetime compared to a “full” sequential quadratic programming
solver (which solves quadratic approximations to the nonlinear program until a KKT point is
reached). The user might prefer to manually allow the SQP solver to solve multiple quadratic
approximations: By setting

Matlab

Python

codeoptions.sqp_nlp.maxqps = k;

codeoptions.sqp_nlp.maxqps = k

for a positive integer k one allows the solver to solve k quadratic approximations at every call
to the solver. In general, the more quadratic approximations which are solved, the higher the
control performance. The tradeoff is that the solvetime also increases.

9.8.2 Different SQP variants

In addition to the default FORCESPRO SQP solver (also refered to as SQP General here),
FORCESPRO supports a new SQP Fast solver from version 6.0.0. An advantage of the fast

Chapter 9. High-level Interface 119

FORCESPRO User Manual

SQP solver is that it is typically faster and can be made to run on more low-level hardware.
An advantage of the general (default) SQP solver is that it is very robust. See Tuning the SQP
Fast solver for a detailed discussion on how to generate a SQP Fast solver and see High-level
interface: Path tracking example (MATLAB) for an example of how to use the SQP Fast solver.

Note: The SQP Fast solver is only supported when using a Gauss-Newton hessian approxima-
tion and disabling the line search (see The hessian approximation and line search settings).
The SQP Fast solver is currently only supported via the MATLAB client of FORCESPRO.

9.8.3 Tuning the SQP Fast solver

One of the novel features of the fast SQP solver is that it can be tuned/tailored to achieve
optimal performance on a specific application. FORCESPRO provides a tool for “autotuning”
the solver (see Autotuner). The main step in using this tool is to collect training problems
which can be used to tune the solver. The standard way to do this is to first generate an SQP
General (codeoptions.sqp_nlp.qp_method = "general", which is also the default value) solver,
perform a closed-loop simulation with this solver while caching/saving all problem instances
(i.e. the inputs to the solver at run-time). In a second step a SQP Fast solver is generated
and automatically tuned by calling ForcesGenerateSqpFastSolver. The complete workflow is
as follows:

Matlab

tuningoptions = ForcesAutotuneOptions(problems)
ForcesGenerateSqpFastSolver(model, codeoptions, tuningoptions);

where problems is a cell array of problems collected from the simulation with the SQP General
solver. The autotuning procedure allows for quite a bit of customization which can be spec-
ified through the ForcesAutotuneOptions object (see Autotuner Options), and one can also
pass multiple problems for the tuning process which should result in better tuned param-
eters. See High-level interface: Path tracking example (MATLAB) for an example of how to
tune the SQP Fast solver.

9.8.4 The hessian approximation and line search settings

The SQP code generation currently supports two different types of hessian approximations.
A good choice of hessian approximation can often improve the number of iterations required
by the solver and thereby its solvetime. The default option for a SQP solver is the BFGS hessian
approximation. When the objective function of the optimization problem is a least squares
cost it is often benefitial to use the Gauss-Newton hessian approximation instead. To enable
this option one proceeds as specified in the sections Hessian approximation and Gauss-
Newton options. When the Gauss-Newton hessian approximation is chosen one can also
disable the the internal linesearch by setting

Matlab

Python

codeoptions.sqp_nlp.use_line_search = 0;

options.sqp_nlp.use_line_search = False

A linesearch is required to ensure global convergence of an SQP method, but is not needed
in a real-time context when a Gauss-Newton hessian approximation is used.

120 Chapter 9. High-level Interface

FORCESPRO User Manual

Note: One cannot disable the line search when using the BFGS hessian approximation.

9.8.5 Controlling the initial guess at run-time

Upon the first call to the generated FORCESPRO SQP solver one needs to specify a primal
initial guess (problem.x0, see also Initial guess). The default behaviour of the FORCESPRO
SQP solver is to use the solution from the previous call as initial guess in every subsequent
call to it. However, one can also manually set an initial guess in subsequent calls to the solver.
Wether a manual initial guess (provided through problem.x0) will be used or the internally
stored solution from the previous call will be used can be controlled by the field problem.
reinitialize of the problem struct which is passed as an argument to the solver when it is
called.

The reinitialize field can take two values: 0 or 1. For the default usage of the solver

Matlab

Python

problem.reinitialize = 0;

problem["reinitialize"] = False

should be used. This choice results in the solver using the solution from the previous call as
initial guess. This feature is useful when running the real-time iteration scheme because it
ensures that the initial guess is close to the optimal solution. If you want to specify an initial
guess at run-time, you will need to set

Matlab

Python

problem.reinitialize = 1;

problem["reinitialize"] = True

So in summary: The first time the solver is called the initial guess the solver will use has to be
provided by problem.x0. In all subsequent calls the solver will only make use of problem.x0 as
its initial guess if problem.reinitialize = 1.

9.8.6 Additional code options specific to the SQP-RTI solver

In addition to the above codeoptions, the following options are specific to the SQP algorithm.
Each of these options can be supplied when generating a solver as a field of codeoptions.
sqp_nlp (e.g. codeoptions.sqp_nlp.TolStat).

Chapter 9. High-level Interface 121

FORCESPRO User Manual

Table 9.3: SQP specific codeoptions
option Possible values Default value Description
TolStat positive 10−6 Set the stationarity tolerance required for

terminating the algorithm (the tolerance
required to claim convergence to a KKT
point).

TolEq positive 10−6 Set the feasibility tolerance required for
terminating the algorithm (the tolerance
required to claim convergence to a feasi-
ble point).

reg_hessian positive 5 · 10−9 Set the level of regularization of the hes-
sian approximation (often increasing this
parameter can help if the SQP solver re-
turns exitflag -8 for your problem)

qpinit 0 or 1 0 Set the initialization strategy for the in-
ternal QP solver. 0 = cold start and 1 =
centered start. See also Solver Initializa-
tion (note however, that for the SQP solver
qpinit=2 is not possible).

In addition to these options one can also specify the maximum number of iterations the in-
ternal QP solver is allowed to run in order to solve the quadratic approximation. If one wishes
the QP solver use no more than k iterations to solve a problem one sets

codeoptions.maxit = k;

Note: The SQP fast solver currently does not support parallel execution, i.e. setting
codeoptions.parallel will have no effect.

9.9 Differences between the MATLAB and the Python client

The Python NLP interface is largely similar to the MATLAB interface, but does come with some
language- and implementation-specific differences.

• All indices in the problem formulation are expected to be 0-based in Python, as is usual
in this language. This does not include the indices of the generated solver, however,
where outputs are named x01, x02, . . . as in MATLAB. Thus, the problem formulation
before generation requires 0-based indices, whereas the returned solver from the server
uses 1-based indices. This also does not apply to the low-level Python interface, where
indices are 1-based even in the model formulation.

• In the Python client, different model objects must be used when using ex-
ternal functions or symbolic expressions, namely nlp.ExternalFunctionModel() and
nlp.SymbolicModel(). Furthermore, if the high-level interface is to be used for convex
problems, this is only possible using the nlp.ConvexSymbolicModel(). This is different
from the MATLAB client, where the FORCES_NLP function accepts problems of any kind
and switches to the appropriate solver automatically.

• When using the Python client with a nlp.SymbolicModel(), the C code generated for
symbolic expressions is currently not entirely identical to the code generated by MAT-
LAB. While the actual expression evaluation code generated by CasADi is the same,
the structure of the files varies. Specifically, the MATLAB client creates individual C
files for each problem stage with distinct symbolic expressions (leading to varying file
names when changing the problem horizon) whereas all functions are gathered in one

122 Chapter 9. High-level Interface

FORCESPRO User Manual

file in the Python client. Yet, the Python client does add one additional file for the
FORCESPRO-CasADi glue code, which is not present when using the MATLAB client.
Lastly, function names of the evaluation functions differ.

If you want to get the same code for MATLAB and Python, you must generate the CasADi
C code from one of both clients and then supply this code as an external function in the
other client.

9.10 Examples

• High-level interface: Basic example: In this example, you learn the basics in how to use
FORCESPRO to create an MPC regulation controllers.

• High-level interface: Obstacle avoidance (MATLAB & Python): This example uses a sim-
ple nonlinear vehicle model to illustrate the use of FORCESPRO for real-time trajectory
planning around non-convex obstacles.

• High-level interface: Indoor localization (MATLAB & Python): This examples describes a
nonlinear optimization approach for the indoor localization problem.

• Mixed-integer nonlinear solver: F8 Crusader aircraft: In this example, you learn the ba-
sics in how to use FORCESPRO MINLP solver to solve a mixed-integer optimal control
problem.

• Real-time SQP Solver: Robotic Arm Manipulator (MATLAB & Python): This example de-
scribes how to apply the FORCESPRO SQP solver to control a robotic arm.

• Controlling a DC motor using a FORCESPRO SQP solver: This example describes how
to apply the FORCESPRO SQP solver to control a DC motor.

• Controlling a crane using a FORCESPRO NLP solver: This example describes how to
apply the FORCESPRO interior point NLP solver to control a crane.

• High-level interface: Optimal EV charging and speed profile example (MATLAB &
PYTHON): This example describes how to apply the FORCESPRO interior point NLP
solver to control the speed and charging profile of an electric vehicle.

Chapter 9. High-level Interface 123

FORCESPRO User Manual

124 Chapter 9. High-level Interface

FORCESPRO User Manual

Chapter 10

Simulating your custom controller
in Simulink®

FORCESPRO provides Simulink® interfaces for easy simulation of your custom controllers
within existing Simulink® diagrams. Once the solver has been generated and compiled, the
appropriate Simulink® block and the necessary code for the Simulink® block definition are
available along with your FORCESPRO solver inside the interface folder. Depending on your
controller configuration you will have different input and output ports on your block. The port
labels are self-explanatory. Just wire the ports of the FORCESPRO block to other blocks in your
Simulink® diagram and run the simulation. Note that several instances of the FORCESPRO
block can exist in the same Simulink® diagram.

The FORCESPRO solvers support two Simulink® interfaces:

• The S-Function interface

• The Coder interface

10.1 The S-Function interface

The S-function interface consists of:

• a Simulink® block definition of a level 2 S-Function (in interface folder);

• the C implementation of the S-Function (in interface folder) which defines how the
FORCESPRO solver is used in the context of the Simulink® block.

The Simulink® block definition is used for the inclusion of the FORCESPRO Simulink® block
in a Simulink® model. The C implementation is either built into a MEX interface to be used
in the simulation of a Simulink® model or used in the build process of the code generation
of a Simulink® model using the Simulink® Coder.

10.2 The Coder interface

The Coder interface consists of:

• a MATLAB Simulink® block (built-in in Simulink) along with the MATLAB code (in inter-
face folder);

• a Buildable (coder.ExternalDependency) class (in interface folder);

• a FORCESPRO Simulink® block creation script (in interface folder).

125

FORCESPRO User Manual

The MATLAB Simulink® block is used for the inclusion of the FORCESPRO Simulink® block
in a Simulink® model. The MALTAB code contains the code that the MATLAB Simulink®
block will run in order to use the FORCESPRO solver. The Buildable class is used as the inter-
mediate interface between the MATLAB Simulink® block (with the defined MATLAB code)
and the FORCESPRO solver. Additionally, it is used to configure the build process of the
Simulink® model. The FORCESPRO Simulink® block creation script handles the generation
of the ready-to-use FORCESPRO Simulink® block from the rest components of the interface
as well as defining the necessary properties for the block.

10.3 S-Function vs Coder interface

The two interfaces share a lot of similarities as their common purpose is to be used to perform
a Simulink® model simulation/execution and as such any of the two can be used. However,
there are also certain differences that distinguish them and make each of them either more
or less suitable for specific use cases.

In more detail:

• The S-Function interface does not support in-lining of the generated code while the
Coder interface does. As a result, the Coder interface can generate faster code compared
to the S-Function interface.

• The Coder interface can only support a Fixed-Step solver for the Simulink® model, while
the S-Function interface can support both a Fixed-Step solver and a Variable-Step solver.

• The S-Function interface requires custom configuration for it to be integrated into the
build process of the Simulink® model code generation, while the Coder interface, other
than the inclusion of the Simulink® block in the Simulink® model, handles all depen-
dencies automatically.

• The Coder interface requires the MATLAB Coder Toolbox for a Simulink® model simu-
lation while the S-Function interface can work without other dependencies. For code
generation of a Simulink® block, the Simulink® Coder Toolbox is already assumed to be
available, therefore both interfaces’ requirements are fulfilled.

10.4 FORCESPRO Simulink® blocks

10.4.1 Getting Started - Basic MPC Regulation State Feedback Example

• Generating the FORCESPRO solver

• Workflow for S-Function interface

• Workflow for Coder interface

• Simulation and checking of results

This example will show how to get started with the Simulink® interface(s) of FORCESPRO by
designing an MPC regulator for the system below.

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client. This example can be used to show the workflow both for the
S-Function interface and the Coder interface.

126 Chapter 10. Simulating your custom controller in Simulink®

FORCESPRO User Manual

Generating the FORCESPRO solver

The state-space model of the system has been obtained by discretizing the continuous model
with a sampling time of 0.1 seconds, and can be described by

𝑥𝑘+1 =

(︂
0.7115 −0.4345
0.4345 0.8853

)︂
𝑥𝑘 +

(︂
0.2173
0.0573

)︂
𝑢𝑘

𝑦𝑘 =
(︀
0 1

)︀
𝑥𝑘

In addition to the task of steering the two states to zero, there are constraints on the single
actuator 𝑢 and on the second state 𝑥2. We require that the actuator 𝑢 does not exceed [−5, 5]
and the state 𝑥2 ≥ 0 for all time steps.

After downloading the files we can start with the design of the controller. First open and
run the script examples/Matlab/SimulinkInterface/generateMyFirstController.m. This script
will define the underlying MPC problem and generate the FORCESPRO solver.

First we define the MPC problem parameters, i.e. the state transition matrix 𝐴 and the in-
put matrix 𝐵. The output matrix 𝐶 and the feed-forward matrix 𝐷 are not needed for solver
generation, but are used in the Simulink® workspace to define the state-space parameters
of the dynamical system block. Notice that we use the identity output matrix, since we want
to regulate both states and not just the output of the system.

Matlab

% MPC parameter setup

% system
A = [0.7115 -0.4345; 0.4345 0.8853];
B = [0.2173; 0.0573];
[nx,nu] = size(B);
C = eye(nx);
D = zeros(nx,1);

% horizon length
N = 10;

% weights in the objective
R = eye(nu);
Q = 10*eye(nx);

% bounds
umin = -5; umax = 5;
xmin = [-inf, 0]; xmax = [+inf, +inf];

We choose a prediction horizon of 10 steps, i.e. the controller looks 1 second into the future.
We define the relative weights in the objective function by prioritizing the importance of reg-
ulating the states 10 times higher than reducing the use of the actuator. You are encouraged
to change these weights and observe the effect on the control behavior.

We also input the details of the constraints described above. The second state must remain
positive, whereas the first state is left unconstrained. We also have a constraint on the actua-
tor, with the lower bound −5 and the upper bound 5.

Next, we define the model struct describing the multistage MPC problem formulation. This
includes the model dynamics (i.e. equality constraints), as well as the bounds on state and
control variables in the form of inequality constraints.

Matlab

Chapter 10. Simulating your custom controller in Simulink® 127

FORCESPRO User Manual

% FORCESPRO multistage form
% assume variable ordering zi = [ui; xi] for i=1...N

% dimensions
model.N = N; % horizon length
model.nvar = nx+nu; % number of variables
model.neq = nx; % number of equality constraints

% objective
model.objective = @(z) z(1)*R*z(1) + [z(2);z(3)]'*Q*[z(2);z(3)];

% equalities
model.eq = @(z) [A(1,:)*[z(2);z(3)] + B(1)*z(1);

A(2,:)*[z(2);z(3)] + B(2)*z(1)];

model.E = [zeros(2,1), eye(2)];

% inequalities
model.lb = [umin, xmin];
model.ub = [umax, xmax];

% initial state
model.xinitidx = 2:3;

Finally, we generate the FORCESPRO solver called myFirstController. Since we will incorpo-
rate the solver in the Simulink® model, we confine the output to the first element of the
solution vector at stage 1, corresponding to the actuator control action of interest.

Matlab

% Generate FORCESPRO solver

% get options
codeoptions = getOptions('myFirstController');
codeoptions.printlevel = 2;
codeoptions.BuildSimulinkBlock = 1;

% generate code
output1 = newOutput('u0', 1, 1);
FORCES_NLP(model, codeoptions, output1);

This will send a request to the server which will generate a custom controller for your prob-
lem. The code is downloaded to your machine and the appropriate Simulink® block and
Simulink® S-function can be found inside the interface folder.

We also provide additional initialization parameters needed for the Simulink® model.

Matlab

% Model Initialization (needed for Simulink® only)

% initial conditions
x_init = [0; 6];

% initial guess
x0 = zeros(model.N*model.nvar,1);

We can now open the Simulink® model myFirstController_sim.slx (by copying the
myFirstController_sim_template.slx file) and incorporate the generated solver into the
Simulink® diagram.

128 Chapter 10. Simulating your custom controller in Simulink®

FORCESPRO User Manual

Workflow for S-Function interface

In this example we will use the compact FORCESPRO Simulink® block
myFirstControllercompact_lib.mdl (see Real-time control with the Simulink® block for
more details). We open myFirstControllercompact_lib.mdl and copy the FORCESPRO
Simulink® block to the myFirstController_sim.slx Simulink® model.

Figure 10.1: Preview of the generated FORCESPRO Simulink® block.

The port labels are self-explanatory. All we have to do is wire the ports of the FORCESPRO
block to other blocks in your Simulink® diagram and run the simulation.

Figure 10.2: Simulink® diagram of the model with inclusion of the FORCESPRO Simulink®
block.

Workflow for Coder interface

We change the Solver of the Simulink® model to Fixed-Step as the Coder interface does not
support Variable-Step.

Matlab

% the coder interface only supports Fixed-Step Simulations
set_param('myFirstController_sim', 'Solver', 'FixedStep');

In this example we will use the compact FORCESPRO Simulink® block. To add
the Simulink® block to the myFirstController_sim.slx Simulink® model we run the
myFirstController_createCoderMatlabFunction.m from the interface folder.

Matlab

% add the interface folder to the path
addpath(fullfile('myFirstController', 'interface'));

% for the coder case run myFirstController_createCoderMatlabFunction in
% myFirstController/interface to create a FORCESPRO Simulink® block to
% the Simulink® model:
% * The first parameter is the target Simulink® model
% * The second parameter is the name of the created Simulink® model

(continues on next page)

Chapter 10. Simulating your custom controller in Simulink® 129

FORCESPRO User Manual

(continued from previous page)

% * The third parameter selects whether to use the standard or the
% compact version
% * The fourth parameter must be set to true if the Simulink® model
% already exists (by default the script always tries to create a
% new Simulink® model)
myFirstController_createCoderMatlabFunction('myFirstController_sim',
→˓'myFirstController', true, true);

% (optionally) remove the interface folder from the path again
rmpath(fullfile('myFirstController', 'interface'));

Simulation and checking of results

From the left plot we can see that the actuator remains in the allowed range. The right plot
shows how the second state 𝑥2 is always non-negative (purple graph in the right plot) and
both states are regulated to zero.

Figure 10.3: Actuator control signal.

Figure 10.4: State evolution of the system.

130 Chapter 10. Simulating your custom controller in Simulink®

FORCESPRO User Manual

10.4.2 Real-time control with the Simulink® block

• Input and Output Ports in the Compact Interface

When a user generates a new solver, a Simulink® block becomes available in the interfaces
folder. Such block is useful to interface the solver with other Simulink®models for simulation,
or for deployment to embedded prototyping hardware using tools such as dSpace MicroAu-
tobox or Simulink® Coder.

Input and Output Ports in the Compact Interface

For every solver, there are two Simulink® variants generated: a standard variant; and a com-
pact variant, which groups parameters and outputs. For problems with many parameters
and outputs, the compact variant is more suitable because it reduces the number of ports
and connections that need to be wired up to the rest of the Simulink® model.

The criteria for grouping parameters is the following: parameters of the same type that have
the same number of rows are grouped together into a single stacked parameter. These pa-
rameters are stacked horizontally, e.g. if there are two parameters mapping to eq.c, both of
size 3x1, they will be grouped into a new parameter of size 3x2. The new parameter will get
the name c.

To illustrate the conversion, consider a problem with the following parameters and with the
corresponding standard (non-compact) Simulink® block:

Name maps2data Dimensions
Amat1 eq.D 2x4
Amat2 eq.D 3x4
Amat3 eq.D 3x4
Amat4 eq.D 3x4
linterm1 cost.f 4x1
linterm2 cost.f 4x1
linterm3 cost.f 4x1
linterm4 cost.f 4x1

For the compact Simulink® block, parameters linterm1, linterm2, linterm3 and linterm4 are
stacked together into a new parameter f (because the problem data they map to is cost.
f). For the parameters mapping to eq.D, Amat2, Amat3 and Amat4 can be stacked into the new
parameter D. Amat1 is not included into the new parameter because it has two rows and the
concatenation is not possible with the other parameters, which all have three rows. Parame-
ters are always stacked horizontally according to the stage number they map to.

Chapter 10. Simulating your custom controller in Simulink® 131

FORCESPRO User Manual

Name maps2data Dimensions
D eq.D 3x12
f cost.f 4x4
Amat1 eq.D 2x4

The port dimensions of any FORCESPRO Simulink®block can be checked by double-clicking
the block and clicking the ‘Help’ button.

132 Chapter 10. Simulating your custom controller in Simulink®

FORCESPRO User Manual

Chapter 11

Examples

11.1 How to

11.1.1 Basic Example

Consider the following linear MPC problem with lower and upper bounds on state and inputs,
and a terminal cost term:

minimize 𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ �̄�

𝑢 ≤ 𝑢𝑖 ≤ �̄�

This problem is parametric in the initial state 𝑥 and the first input 𝑢0 is typically applied to
the system after a solution has been obtained. The following code generates a function that
takes −𝐴𝑥 as a calling argument and returns 𝑢0, which can then be applied to the system.

Here is the Matlab code:

%% FORCES multistage form
% assume variable ordering zi = [u{i-1}, x{i}] for i=1...N

stages = MultistageProblem(N); % get stages struct of length N

for i = 1:N

% dimension
stages(i).dims.n = nx+nu; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = nx+nu; % number of lower bounds
stages(i).dims.u = nx+nu; % number of upper bounds

% cost
if(i == N)

stages(i).cost.H = blkdiag(R,P); % terminal cost (Hessian)
else

stages(i).cost.H = blkdiag(R,Q);
end
stages(i).cost.f = zeros(nx+nu,1); % linear cost terms

(continues on next page)

133

FORCESPRO User Manual

(continued from previous page)

% lower bounds
stages(i).ineq.b.lbidx = 1:(nu+nx); % lower bound acts on these indices
stages(i).ineq.b.lb = [umin; xmin]; % lower bound for this stage variable

% upper bounds
stages(i).ineq.b.ubidx = 1:(nu+nx); % upper bound acts on these indices
stages(i).ineq.b.ub = [umax; xmax]; % upper bound for this stage variable

% equality constraints
if(i < N)

stages(i).eq.C = [zeros(nx,nu), A];
end
if(i>1)

stages(i).eq.c = zeros(nx,1);
end
stages(i).eq.D = [B, -eye(nx)];

end

% RHS of first eq. constr. is a parameter: stages(1).eq.c = -A*x0
params(1) = newParam('minusA_times_x0',1,'eq.c');

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

And here’s the Python code:

FORCESPRO multistage form
assume variable ordering zi = [u{i-1}, x{i}] for i=1...N

stages = forcespro.MultistageProblem(N) # get stages struct of length N

for i in range(N):

dimensions
stages.dims[i]['n'] = nx+nu # number of stage variables
stages.dims[i]['r'] = nx # number of equality constraints
stages.dims[i]['l'] = nx+nu # number of lower bounds
stages.dims[i]['u'] = nx+nu # number of upper bounds

cost
if (i == N-1):

stages.cost[i]['H'] = np.vstack((np.hstack((R,np.zeros((nu,nx)))),
→˓np.hstack((np.zeros((nx,nu)),P))))

else:
stages.cost[i]['H'] = np.vstack((np.hstack((R,np.zeros((nu,nx)))),

→˓np.hstack((np.zeros((nx,nu)),Q))))
stages.cost[i]['f'] = np.zeros((nx+nu,1)) # linear cost terms

lower bounds
stages.ineq[i]['b']['lbidx'] = range(1,nu+nx+1) # lower bound acts on these␣

→˓indices
stages.ineq[i]['b']['lb'] = np.concatenate((umin,xmin),0) # lower bound for␣

→˓this stage variable

upper bounds
stages.ineq[i]['b']['ubidx'] = range(1,nu+nx+1) # upper bound acts on␣

(continues on next page)

134 Chapter 11. Examples

FORCESPRO User Manual

(continued from previous page)

→˓these indices
stages.ineq[i]['b']['ub'] = np.concatenate((umax,xmax),0) # upper bound for␣

→˓this stage variable

equality constraints
if (i < N-1):

stages.eq[i]['C'] = np.hstack((np.zeros((nx,nu)),A))
if (i>0):

stages.eq[i]['c'] = np.zeros((nx,1))
stages.eq[i]['D'] = np.hstack((B,-np.eye(nx)))

RHS of first eq. constr. is a parameter: stages(1).eq.c = -A*x0
stages.newParam('minusA_times_x0', [1], 'eq.c')
define output of the solver
stages.newOutput('u0', 1, range(1,nu+1))

11.1.2 How to Incorporate Preview Information in the MPC Problem

• Introduction

• Use preview information in the MATLAB® interface

• Comparison of MPC with Preview and Standard MPC

Introduction

In this example the following discrete-time system is considered:

𝑥𝑘+1 =

(︂
0.7115 −0.4345
0.4345 0.8853

)︂
𝑥𝑘 +

(︂
1
1

)︂
𝑢𝑘 +

(︂
1
1

)︂
𝑤𝑘

The control objective is to regulate the two states to zero using the input 𝑢𝑘 , while a distur-
bance 𝑤𝑘 is acting on the system. The disturbance 𝑤𝑘 gets predicted for a horizon of length
𝑁 = 10, which is equal to the control horizon of the model predictive control problem solved
at each time step by the FORCESPRO controller. At each time step 𝑘, a predicted disturbance
for the next 𝑁 steps is considered by the FORCESPRO controller. For the cost function of the
MPC problem, it is assumed that the relative importance of regulating the two states to zero
is ten times as high as the penalty on applying an input. Further it is demanded, that the in-
put magnitude of the input signal 𝑢 lies in the range [−1.8, 1.8]. The initial state of the system
is set to zero, i. e. 𝑥0 = [0; 0].

One can see that the disturbance drives the states far away from the desired value. In this
example it is shown how FORCESPRO can significantly improve the dynamical behaviour by
using the concept of ‘preview’ when such future information is available.

Chapter 11. Examples 135

FORCESPRO User Manual

Use preview information in the MATLAB® interface

The multistage problem is constructed as shown in the simple example here and is then
extended as shown below.

The parametric additive terms g have to be defined. At each stage of the multistage problem,
the equality constraint change, therefore we have to define a parameter for each stage. In
the definition of the parameters, distx represents the name of the predicted disturbance at
stage x of the multistage problem.

During runtime, the preview information is mapped to these parameters.

% RHS of first eq. constr. is a parameter: z1=-A*x0 -Bw*Road
parameter(1) = newParam('minusA_times_x0_BwDist',1,'eq.c');
% Parameter of Preview
parameter(2) = newParam('dist1',2,'eq.c');
parameter(3) = newParam('dist2',3,'eq.c');
parameter(4) = newParam('dist3',4,'eq.c');
parameter(5) = newParam('dist4',5,'eq.c');
parameter(6) = newParam('dist5',6,'eq.c');
parameter(7) = newParam('dist6',7,'eq.c');
parameter(8) = newParam('dist7',8,'eq.c');
parameter(9) = newParam('dist8',9,'eq.c');
parameter(10) = newParam('dist9',10,'eq.c');

After setting up the multistage problem with the parametric equality constraints, configure
the solver settings (i. e. define solver output and solver options), the solver can be generated
by using the command generateCode(...). With the function provided by FORCESPRO, the
system is now ready for simulation.

Comparison of MPC with Preview and Standard MPC

Figure 11.2 shows the dynamics of the system using a non-preview controller and a preview
controller designed using FORCES Pro. One can see that the maximum deviation of the two
states from their desired value is reduced by a factor 18, and 11, respectively. Compared to the
open loop case, the magnitude of the deviation is reduced by a factor of 47, and 34, respec-
tively.

136 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.1 shows the control action of both controllers. As expected, the input signal remains
in the allowed range. One can see how the preview controller makes use of future information
to provide a more aggressive control action that results in improved system performance.

Figure 11.1: Comparison preview vs. non-preview

11.1.3 HOW TO: Implement an MPC Controller with a Time-Varying Dy-
namics

• Introduction

• Implementation

• Comparison of the two approaches

Introduction

This ‘HOW TO’ explains how FORCESPRO can be used to handle time-varying models to
achieve better control performance than a standard MPC controller. For this example it is
assumed that the time-varying model consists of four different systems. This could be four
models derived from a nonlinear system at four operating points or from a periodic system.
The systems are listed below. The first system is a damped harmonic oscillator, while the sec-
ond system has eigenvalues on the right plane and is therefore unstable. System three is also
a damped oscillator, but differs from system one. System four is an undamped harmonic

Chapter 11. Examples 137

FORCESPRO User Manual

Figure 11.2: Comparison preview vs. no preview

oscillator.

System 1: 𝑥𝑘+1 =

(︂
0.7115 −0.6

0.6 0.8853

)︂
𝑥𝑘 +

(︂
0.2173
0.0573

)︂
𝑢𝑘

System 2: 𝑥𝑘+1 =

(︂
0.9 0.5
0.5 1

)︂
𝑥𝑘 +

(︂
0

0.0666

)︂
𝑢𝑘

System 3: 𝑥𝑘+1 =

(︂
0.7115 −0.5

0.5 1

)︂
𝑥𝑘 +

(︂
0.5
0.01

)︂
𝑢𝑘

System 4: 𝑥𝑘+1 =

(︂
0 0.9
−1 0

)︂
𝑥𝑘 +

(︂
0

0.2

)︂
𝑢𝑘

In this example we assume that system 1 is active for the first 4 steps. Then at step 5 the
model changes to system 2, which stays active for 8 steps. Then we switch to system 3 for the
following 3 steps and finally system 4 is active for the next 5 steps. This pattern is periodic, i. e.
every 20 steps the cycle starts again. Also we have an initial condition of 𝑥0 = [1; 1], a prediction
horizon 𝑁 = 15 and the simulation runs for 40 steps.

The open loop dynamics of this time-varying model are shown on the right. One can see
that the system becomes unstable. The goal is to regulate both states to zero while satisfying
the different input constraints on each system. The constraints on the model are 𝑢 ∈ [−3, 5],
𝑢 ∈ [−5.5, 5.5], 𝑢 ∈ [−3, 5] and 𝑢 ∈ [−0.45, 4.5] for systems 1, 2, 3 and 4, respectively.

At each step 𝑘 FORCESPRO takes the changing state space matrices and the corresponding
input constraints into account, in order to regulate both states to zero as fast as possible. The
following section shows how a controller for this problem can be implemented using the
FORCESPRO MATLAB® Interface.

Implementation

The FORCESPRO MATLAB® Interface is used to pose a multistage problem problem as de-
scribed here. When taking the changing dynamics over the prediction horizon into account,
the matrices 𝐶𝑖−1 and 𝐷𝑖 of the inter-stage equality have to be defined as parameters for
each prediction step 𝑖. Additionally the lower bounds 𝑧𝑖 and the upper bounds 𝑧𝑖 on the op-
timization variable have to be defined as parameters as they also change over the prediction

138 Chapter 11. Examples

FORCESPRO User Manual

horizon. Also, the initial condition has to be set as a parameter. The code below shows the
multistage problem and the commands to design the controller using FORCESPRO.

%% Multistage Problem: Varying Model in Prediction Horizon
stages = MultistageProblem(N); % get stages struct of length N

% Initial Equality
% c_1 = -A*x0
parameter(1) = newParam('minusA_times_x0',1,'eq.c');

for i = 1:N
% dimension
stages(i).dims.n = nx+nu; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = nu; % number of lower bounds
stages(i).dims.u = nu; % number of upper bounds

% lower bounds
stages(i).ineq.b.lbidx = 1; % lower bound acts on these indices
parameter(1+i) = newParam(['u',num2str(i),'min'],i,'ineq.b.lb');

% upper bounds
stages(i).ineq.b.ubidx = 1; % upper bound acts on these indices
parameter(1+N+i) = newParam(['u',num2str(i),'max'],i,'ineq.b.ub');

% cost
stages(i).cost.H = blkdiag(R,Q);
stages(i).cost.f = zeros(nx+nu,1);

% Equality constraints
if(i>1)

stages(i).eq.c = zeros(nx,1);
end
% Inter-Stage Equlity
% D_i*z_i = [B_i -I]*z_i
parameter(1+2*N+i) = newParam(['D_',num2str(i)],i,'eq.D');
if(i < n)

% C_{i-1}*z_{i-1} = [0 A_i]*z_{i-1}
parameter(1+3*N+i) = newParam(['C_',num2str(i)],i,'eq.C’);

end
end

(continues on next page)

Chapter 11. Examples 139

FORCESPRO User Manual

(continued from previous page)

% define outputs of the solver
outputs(1) = newOutput('u0',1,1);
% solver settings
codeoptions = getOptions('Time_Varying_Model_wP');
% generate code
generateCode(stages,parameter,codeoptions,outputs);

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

Comparison of the two approaches

The two plots in Figure 11.3 and Figure 11.4 respectively, show the difference between the re-
sponse of a controller that assumes constant matrices 𝐴 and 𝐵 over the whole prediction
horizon, and a controller that considers the changing dynamics, e. g. at time step 0 the sec-
ond controller knows that system 1 will only be active for the first 4 steps. The left plot shows
the system response and the right plot shows the actuator signals and the varying system
constraints.

Both controllers can satisfy the contraints. To quantify the improvement in control perfor-
mance, the cost function

∑︀𝑁
𝑘=1 𝑥

𝑇
𝑘𝑄𝑥𝑘 + 𝑢𝑇𝑘𝑅𝑢𝑘 can be evaluated for the whole simulation

length of 𝑛 = 40. For the controller that uses a fixed model for the prediction horizon, the
closed loop cost for regulating the states to zero is 2163.2. With the FORCESPRO time-varying
controller the costs is reduced to 457.5. This is a cost reduction of almost 80%.

Figure 11.3: States Time-varying MPC vs. basic MPC

11.1.4 How to Implement 1-Norm and Infinity-Norm Cost Functions

• Introduction

• 1-norm reformulation

• ∞-norm formulation

140 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.4: Input Time-varying MPC vs. basic MPC

Introduction

In this example we use the system described in the Basic MPC Example, but we will imple-
ment non-quadratic costs of the type

||𝑅𝑢𝑖||1

or

||𝑄𝑥𝑖||∞

which are sometimes more meaningful for certain applications.

In both cases we will have to introduce slack variables and additional constraints, hence the
optimization problem will become more challenging to solve, even if the cost function be-
comes linear instead of quadratic.

1-norm reformulation

The 1-norm is the absolute sum of a vector, hence a 1-norm penalty on the actuators can be a
more meaningful objective when, for instance, the fuel consumption is directly proportional
to actuation. The 1-norm also induces sparsity in the solution vector, i.e. a 1-norm cost leads to
solutions where actuators are not used at all if possible, which can more accurately represent
the objective of minimising wear in certain applications.

To formulate a 1-norm cost as an optimization problem we introduce one slack variable 𝜖𝑗 per
vector element of 𝑅𝑢𝑖 (i.e. such that the vector 𝜖 has the same length as the vector 𝑅𝑢𝑖) and
add it to the polytopic constraints. As a result, the problem

minimize ||𝑅𝑢𝑖||1
subject to constraints

is transformed into the problem

minimize
∑︁
𝑗

𝜖𝑗

subject to ±𝑅𝑢𝑖 ≤ 𝜖

constraints

The following MATLAB code shows how to model a problem with 1-norm penalties on the
actuators and quadratic penalties on the states with FORCESPRO. In particular, note the
changes to the cost function and the introduction of polytopic constraints.

Chapter 11. Examples 141

FORCESPRO User Manual

%% FORCES multistage form
% assume variable ordering zi = [u{i-1}, x{i}, e{i-1}] for i=1...N

stages = MultistageProblem(N); % get stages struct of length N

for i = 1:N

% dimension
stages(i).dims.n = nx+2*nu; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = nx+nu; % number of lower bounds
stages(i).dims.u = nx+nu; % number of upper bounds
stages(i).dims.p = 2*nu; % number of polytopic constraints

% cost
if(i == N)

stages(i).cost.H = blkdiag(zeros(nu),P,zeros(nu)); % terminal cost␣
→˓(Hessian)

else
stages(i).cost.H = blkdiag(zeros(nu),Q,zeros(nu));

end
stages(i).cost.f = [zeros(nx+nu,1); ones(nu,1)]; % linear cost terms

% lower bounds
stages(i).ineq.b.lbidx = 1:(nu+nx); % lower bound acts on these indices
stages(i).ineq.b.lb = [umin; xmin]; % lower bound for this stage variable

% upper bounds
stages(i).ineq.b.ubidx = 1:(nu+nx); % upper bound acts on these indices
stages(i).ineq.b.ub = [umax; xmax]; % upper bound for this stage variable

% polytopic bounds
stages(i).ineq.p.A = [R, zeros(nu,nx), -eye(nu); ...

-R, zeros(nu,nx), -eye(nu)];
stages(i).ineq.p.b = zeros(2*nu,1);

% equality constraints
if(i < N)

stages(i).eq.C = [zeros(nx,nu), A, zeros(nx,nu)];
end
if(i>1)

stages(i).eq.c = zeros(nx,1);
end
stages(i).eq.D = [B, -eye(nx), zeros(nx,nu)];

end

% RHS of first eq. constr. is a parameter: stages(1).eq.c = -A*x0
params(1) = newParam('minusA_times_x0',1,'eq.c');

You can download the Matlab code of this example using this link.

∞-norm formulation

The ∞-norm is the maximum absolute value in a vector, hence an ∞-norm penalty on the
states tries to minimise the maximum deviation of any state from the setpoint rather than
the combined deviation of all the states in the system.

142 Chapter 11. Examples

https://forces.embotech.com/Documentation/_downloads/Matlab/LowLevelInterface/NonQuadraticPenalties/FORCESPRO_simplempc_1norm.zip

FORCESPRO User Manual

To formulate an ∞-norm cost as an optimization problem we need to introduce a single slack
variable 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 and add polytopic constraints. As a result, the problem

minimize ||𝑄𝑥𝑖||∞
subject to constraints

is transformed into the problem

minimize 𝜖

subject to ±𝑄𝑥𝑖 ≤ 1𝑇 𝜖

constraints

where the vector 1 = [1 . . . 1] has the same length as the vector 𝑄𝑥𝑖.

The following MATLAB code shows how to model a problem with ∞-norm penalties on
the states and quadratic penalties on the inputs with FORCESPRO. In particular, note the
changes to the cost function and the introduction of polytopic constraints. Also note that we
only need to add one more variable per stage.

%% FORCES multistage form
% assume variable ordering zi = [u{i-1}, x{i}, e{i-1}] for i=1...N

stages = MultistageProblem(N); % get stages struct of length N

for i = 1:N

% dimension
stages(i).dims.n = nx+nu+1; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = nx+nu; % number of lower bounds
stages(i).dims.u = nx+nu; % number of upper bounds
stages(i).dims.p = 2*nx; % number of polytopic constraints

% cost
if(i == N)

stages(i).cost.H = blkdiag(R,zeros(nx),0); % terminal cost (Hessian)
else

stages(i).cost.H = blkdiag(Q,zeros(nx),0);
end
stages(i).cost.f = [zeros(nx+nu,1); 1]; % linear cost terms

% lower bounds
stages(i).ineq.b.lbidx = 1:(nu+nx); % lower bound acts on these indices
stages(i).ineq.b.lb = [umin; xmin]; % lower bound for this stage variable

% upper bounds
stages(i).ineq.b.ubidx = 1:(nu+nx); % upper bound acts on these indices
stages(i).ineq.b.ub = [umax; xmax]; % upper bound for this stage variable

% polytopic bounds
if(i == N)

stages(i).ineq.p.A = [zeros(nx,nu), P, -ones(nx,1); ...
zeros(nx,nu), -P, -ones(nx,

→˓1)];
else

stages(i).ineq.p.A = [zeros(nx,nu), Q, -ones(nx,1); ...
zeros(nx,nu), -Q, -ones(nx,

→˓1)];

(continues on next page)

Chapter 11. Examples 143

FORCESPRO User Manual

(continued from previous page)

end
stages(i).ineq.p.b = zeros(2*nx,1);

% equality constraints
if(i < N)

stages(i).eq.C = [zeros(nx,nu), A, zeros(nx,1)];
end
if(i>1)

stages(i).eq.c = zeros(nx,1);
end
stages(i).eq.D = [B, -eye(nx), zeros(nx,1)];

end

% RHS of first eq. constr. is a parameter: stages(1).eq.c = -A*x0
params(1) = newParam('minusA_times_x0',1,'eq.c');

Here you can download the Matlab code of this example.

11.1.5 HOW TO: Implement Rate Constraints

• Problem formulation

• Implementation

• Simulation Results

Problem formulation

In this example it is illustrated how slew rate constraints on a system’s actuators can be in-
corporated in the controller design. As a real world example one could think of an airplane,
where the elevator cannot be switched instantaneously from one position to another, i. e. has
a limited slew rate. Here the concept of constraints on the slew rate is shown on the following
system:

𝑥𝑘+1 =

(︂
0.7115 −0.4345
0.4345 0.8853

)︂
𝑥𝑘 +

(︂
0.2173
0.0573

)︂
𝑢𝑘 ⇔ 𝑥𝑘+1 = 𝐴𝑥𝑘 +𝐵𝑢𝑘

To have a bound on the slew rate, 𝑢𝑘 − 𝑢𝑘−1 has to lie in some range, i. e.

∆𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘 − 𝑢𝑘−1 ≤ ∆𝑢𝑚𝑎𝑥.

One option to set the constraints on the slew rate is to augment the state as follows:

�̂�𝑘 =

(︂
𝑥𝑘
𝑢𝑘−1

)︂
⇔ �̂�𝑘+1 =

(︂
𝐴 𝐵
0 𝐼

)︂
�̂�𝑘 +

(︂
𝐵
𝐼

)︂
�̂�𝑘 ⇔ �̂�𝑘+1 = 𝐴�̂�𝑘 + �̂��̂�𝑘

144 Chapter 11. Examples

https://forces.embotech.com/Documentation/_downloads/Matlab/LowLevelInterface/NonQuadraticPenalties/FORCESPRO_simplempc_infnorm.zip

FORCESPRO User Manual

where �̂� is defined as 𝑢𝑘−𝑢𝑘−1. To implement the problem using FORCESPRO, the multistage
problem has to be defined as stated here. The optimization variable is 𝑧𝑖 = [�̂�𝑖 �̂�𝑖+1]𝑇 .

�̂�𝑘+1 =𝐴�̂�𝑘 + �̂��̂�𝑘

∆𝑢𝑚𝑖𝑛 ≤ �̂� ≤ ∆𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛 ≤𝑢 ≤ ∆𝑢𝑚𝑎𝑥⃦⃦⇓
minimize

1

2

𝑁∑︁
𝑖=1

𝑧𝑇𝑖 𝐻𝑖𝑧𝑖

subject to 𝐷1𝑧1 = 𝑐1

𝐶𝑖−1𝑧𝑖−1 +𝐷𝑖𝑧𝑖 = 𝑐𝑖

𝑧𝑚𝑖𝑛 ≤ 𝑧𝑖 ≤ 𝑧𝑚𝑎𝑥

The details on how the first equality and the interstage equality look like and how the con-
straints are implemented can be seen in the MATLAB® code below.

Implementation

%% FORCES multistage form
% assume variable ordering zi = [uhat_{i-1}, xhat_{i}] for i=1...N

stages = MultistageProblem(N); % get stages struct of length N

for i = 1:N

% dimension
stages(i).dims.n = 4; % number of stage variables
stages(i).dims.r = 3; % number of equality constraints
stages(i).dims.l = 2; % number of lower bounds: minimal slew rate and minimal␣

→˓input
stages(i).dims.u = 2; % number of upper bounds: maximal slew rate and maximal␣

→˓input

% cost
if(i == N)

stages(i).cost.H = blkdiag(R_sr, [P, zeros(2,1); zeros(1,2), 0]); %␣
→˓terminal cost (Hessian)

else
stages(i).cost.H = blkdiag(R_sr, [Q, zeros(2,1); zeros(1,2), R]);

end
stages(i).cost.f = zeros(3,1); % linear cost terms

% lower bounds
stages(i).ineq.b.lbidx = [1,4]; % indices of lower bounds
stages(i).ineq.b.lb = [dumin; umin]; % lower bounds

% upper bounds
stages(i).ineq.b.ubidx = [1,4]; % indices of upper bounds
stages(i).ineq.b.ub = [dumax; umax]; % upper bounds

% equality constraints
if(i < N)

stages(i).eq.C = [zeros(3,1), [A, B; zeros(1, 2), 1]];
end

(continues on next page)

Chapter 11. Examples 145

FORCESPRO User Manual

(continued from previous page)

if(i>1)
stages(i).eq.c = zeros(3,1);

end
stages(i).eq.D = [[B;1], -eye(3)];

end

% RHS of initial equality constraint is a parameter
parameter(1) = newParam('minusAhat_times_xhat0',1,'eq.c');

% Define outputs of the solver
output(1) = newOutput('uhat',1,1);

% Solver settings
codeoptions = getOptions('RateConstraints_Controller');

% Generate code
generateCode(stages,parameter,codeoptions,output);

You can download the Matlab code of this example to try it out for yourself here

Simulation Results

For simulation the following specifications are assumed: the initial condition 𝑥0 ∈ [−2; 6], the
input signal 𝑢 is in the range [−0.5, 2] and the constraints on the slew rate is �̂� ∈ [−1, 0.5]. Figure
11.5, Figure 11.6 and Figure 11.7 show how the controller regulates both states to zero while �̂�
and 𝑢 remain in the required range.

Figure 11.5: The states are both regulated to zero. No constraints are imposed on the states.

Figure 11.6: Plot of 𝑢

In Figure 11.6 and Figure 11.7 one sees how the input signal is maximally increased in the be-
ginning with a slew rate of 0.5, until it reaches its upper bound of 2. In the figure on the right

146 Chapter 11. Examples

https://forces.embotech.com/Documentation/_downloads/Matlab/LowLevelInterface/InputRateConstraints/FORCESPRO_HOWTO_RateConstraints.zip

FORCESPRO User Manual

Figure 11.7: Plot of 𝑑𝑢

the slew rate is depicted. One can see that in the beginning, the slew rate stays at its upper
bound 0.5. At simulation step 6 the input signal is maximally reduced. Again this is visible
from the slew rate being at its lower bound −1.

11.1.6 Binary MPC Example

• Simulation result

• Details on problem reformulation

Let us consider a simple MPC example where the system has inputs that can take only two
values, 𝑢𝑚𝑖𝑛 or 𝑢𝑚𝑎𝑥. The original problem (shown on the left) can be reformulated into the
problem on the right, which corresponds to a standard form for which FORCESPRO can gen-
erate a solver. The details of the reformulation are given at the end of this example.

Simple MPC problem with discrete inputs:

minimize 𝑥𝑇𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥𝑇𝑖 𝑄𝑥𝑖 + 𝑢𝑇𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖

𝑥𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑚𝑎𝑥

𝑢𝑖 ∈ {𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥}

Equivalent problem with binary inputs

minimize 𝑥𝑇𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥𝑇𝑖 𝑄𝑥𝑖 + 𝛿𝑇𝑖 �̃�𝛿𝑖 + 𝑓𝑇 𝛿𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 + �̃�𝛿𝑖 + 𝑏

𝑥𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑚𝑎𝑥

𝛿𝑖 ∈ {0, 1}𝑛𝑢

The problem on the right can now be easily formulated in FORCESPRO. Note that the prob-
lem description is very similar to that of the simple MPC example, with the only modification
that certain variables are marked to be binary. Download and run a complete simulation
script to see the output.

nx = 2; nu = 2;

(continues on next page)

Chapter 11. Examples 147

FORCESPRO User Manual

(continued from previous page)

% assume variable ordering zi = [delta_{i-1}; x{i}] for i=1...N
stages = MultistageProblem(N);
for i = 1:N
% dimension
stages(i).dims.n = nx+nu; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = nx; % number of lower bounds
stages(i).dims.u = nx; % number of upper bounds
stages(i).bidx = 1:nu; % index of binary variables

% cost
if(i == N)

stages(i).cost.H = blkdiag(Rtilde,P);
else

stages(i).cost.H = blkdiag(Rtilde,Q);
end
stages(i).cost.f = [ftilde; zeros(nx,1)];

% lower bounds
stages(i).ineq.b.lbidx = (nu+1):(nu+nx); % lower bound on states
stages(i).ineq.b.lb = xmin; % upper bound values

% upper bounds
stages(i).ineq.b.ubidx = (nu+1):(nu+nx); % upper bound for this stage variable
stages(i).ineq.b.ub = umax; % upper bound for this stage variable

% equality constraints
if(i < N)

stages(i).eq.C = [zeros(nx,nu), A];
end
if(i>1)

stages(i).eq.c = -Bconst;
end
stages(i).eq.D = [Btilde, -eye(nx)];

end

% RHS of first eq. constr. is a parameter: z1=-A*x0
params(1) = newParam('minusA_times_x0',1,'eq.c');

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

You can download the Python code of this example here.

Simulation result

When running the example, you should see the following closed-loop behavior:

Details on problem reformulation

The reformulation is done as follows: we introduce a variable 𝑑𝑒𝑙𝑡𝑎 such that

𝛿 = 0 ⇔ 𝑢 = 𝑢𝑚𝑖𝑛 and 𝛿 = 0 ⇔ 𝑢 = 𝑢𝑚𝑎𝑥

This can be formulated by the equality constraint

𝑢 = 𝑢𝑚𝑖𝑛 + diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝛿

148 Chapter 11. Examples

https://forces.embotech.com/Documentation/_downloads/Python/LowLevelInterface/FORCESPRO_binary_simpleMPC_python.zip

FORCESPRO User Manual

where diag denotes a diagonal matrix. To keep the number of variables at a minimum, we
will directly insert this equation into the dynamics:

𝑥+ = 𝐴𝑥+𝐵𝑢

= 𝐴𝑥+𝐵𝑢𝑚𝑖𝑛 +𝐵diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝛿

= 𝐴𝑥+ �̃�𝛿 + 𝑏

where �̃� := 𝐵diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛) and 𝑏 := 𝐵𝑢𝑚𝑖𝑛.

Similarly for the cost function,

𝑢𝑇𝑅𝑢 = (𝑢𝑚𝑖𝑛 + diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝛿)𝑇𝑅(𝑢𝑚𝑖𝑛 + diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝛿)

= 𝛿𝑇diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝑅diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝛿 + 2𝑢𝑚𝑖𝑛diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝑅𝛿 + const

= 𝛿𝑇 �̃�𝛿 + 𝑓𝑇 𝛿 + const

where

�̃� = diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝑅diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)

𝑓 = 2𝑅diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝑢𝑚𝑖𝑛

11.2 Y2F interface: Basic example

• Defining the problem data

• Defining the MPC problem

• Generating a solver

• Calling the generated solver

Chapter 11. Examples 149

FORCESPRO User Manual

• Simulation

• Results

• Variation 1: Parametric cost

• Variation 2: Time-varying dynamics

• Variation 3: Time-varying constraints

Consider the following linear MPC problem with lower and upper bounds on state and inputs,
and a terminal cost term:

minimize 𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ �̄�

𝑢 ≤ 𝑢𝑖 ≤ �̄�

This problem is parametric in the initial state 𝑥 and the first input 𝑢0 is typically applied to the
system after a solution has been obtained. Here we present the problem formulation with
YALMIP, how you can use Y2F to easily generate a solver with FORCESPRO, and how you can
use the resulting controller for simulation.

You can download the Matlab code of this example to try it out for yourself from https://raw.
githubusercontent.com/embotech/Y2F/master/examples/mpc_basic_example.m.

Important: Make sure to have YALMIP installed correctly (run yalmiptest to verify this).

11.2.1 Defining the problem data

Let’s define the known data of the MPC problem, i.e. the system matrices 𝐴 and 𝐵, the pre-
diction horizon 𝑁 , the stage cost matrices 𝑄 and 𝑅, the terminal cost matrix 𝑃 , and the state
and input bounds:

%% MPC problem data

% system matrices
A = [1.1 1; 0 1];
B = [1; 0.5];
[nx,nu] = size(B);

% horizon
N = 10;

% cost matrices
Q = eye(2);
R = eye(1);
if exist('dlqr', 'file')

[~,P] = dlqr(A,B,Q,R);
else

fprintf('Did not find dlqr (part of the Control Systems Toolbox). Will use 10*Q␣
→˓for the terminal cost matrix.\n');

P = 10*Q;
end

(continues on next page)

150 Chapter 11. Examples

https://raw.githubusercontent.com/embotech/Y2F/master/examples/mpc_basic_example.m
https://raw.githubusercontent.com/embotech/Y2F/master/examples/mpc_basic_example.m

FORCESPRO User Manual

(continued from previous page)

% constraints
umin = -0.5; umax = 0.5;
xmin = [-5; -5]; xmax = [5; 5];

11.2.2 Defining the MPC problem

Let’s now dive in right into the problem formulation:

%% Build MPC problem in Yalmip

% Define variables
X = sdpvar(nx,N+1,'full'); % state trajectory: x0,x1,...,xN (columns of X)
U = sdpvar(nu,N,'full'); % input trajectory: u0,...,u_{N-1} (columns of U)

% Initialize objective and constraints of the problem
cost = 0; const = [];

% Assemble MPC formulation
for i = 1:N

% cost
if(i < N)

cost = cost + 0.5*X(:,i+1)'*Q*X(:,i+1) + 0.5*U(:,i)'*R*U(:,i);
else

cost = cost + 0.5*X(:,N+1)'*P*X(:,N+1) + 0.5*U(:,N)'*R*U(:,N);
end

% model
const = [const, X(:,i+1) == A*X(:,i) + B*U(:,i)];

% bounds
const = [const, umin <= U(:,i) <= umax];
const = [const, xmin <= X(:,i+1) <= xmax];

end

Thanks to YALMIP, defining the mathematical problem is very much like writing down the
mathematical equations in code.

11.2.3 Generating a solver

We have now incrementally built up the cost and const objects, which are both YALMIP ob-
jects. Now comes the magic: use the function optimizerFORCES to generate a solver for the
problem defined by const and cost with the initial state as a parameter, and the first input
move 𝑢0 as an output:

%% Create controller object (generates code)
% for a complete list of codeoptions, see
% https://www.embotech.com/FORCES-Pro/User-Manual/Low-level-Interface/Solver-Options
codeoptions = getOptions('simpleMPC_solver'); % give solver a name
controller = optimizerFORCES(const, cost, codeoptions, X(:,1), U(:,1), {'xinit'}, {'u0
→˓'});

That’s it! Y2F automatically figures out the structure of the problem and generates a solver.

Chapter 11. Examples 151

FORCESPRO User Manual

11.2.4 Calling the generated solver

We can now use the controller object to call the solver:

% Evaluate controller function for parameters
[output,exitflag,info] = controller{ xinit };

or call the generated MEX code directly:

% This is an equivalent call, if the controller object is deleted from the workspace
[output,exitflag,info] = simpleMPC_solver({ xinit });

Tip: Type help solvername to get more information about how to call the solver.

11.2.5 Simulation

Let’s now simulate the closed loop over the prediction horizon 𝑁 :

%% Simulate
x1 = [-4; 2];
kmax = 30;
X = zeros(nx,kmax+1); X(:,1) = x1;
U = zeros(nu,kmax);
problem.z1 = zeros(2*nx,1);
for k = 1:kmax

% Evaluate controller function for parameters
[U(:,k),exitflag,info] = controller{ X(:,k) };

% Always check the exitflag in case something went wrong in the solver
if(exitflag == 1)

fprintf('Time step %2d: FORCES took %2d iterations and %5.3f ', k, info.it,␣
→˓info.solvetime*1000);

fprintf('milliseconds to solve the problem.\n');
else

info
error('Some problem in solver');

end

% State update
X(:,k+1) = A*X(:,k) + B*U(:,k);

end

11.2.6 Results

The results of the simulation are presented in Figure 11.8. The plot on the top shows the sys-
tem’s states over time, while the plot on the bottom shows the input commands. We can see
that all constraints are respected.

11.2.7 Variation 1: Parametric cost

One possible variation is if we consider the weighting matrices 𝑄, 𝑅 and 𝑃 as parameters, so
that we can tune them after the code generation. The following problem is solved at each

152 Chapter 11. Examples

FORCESPRO User Manual

0 5 10 15 20 25 30

-5

0

5
states

0 5 10 15 20 25 30

-0.5

0

0.5
input

Figure 11.8: Simulation results of the states (top, in blue and red) and input (bottom, in blue)
over time. The state and input constraints are plotted in red dashed lines.

Chapter 11. Examples 153

FORCESPRO User Manual

time step:

minimize 𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ �̄�

𝑢 ≤ 𝑢𝑖 ≤ �̄�

As usual, this problem is also parametric in the initial state 𝑥 and the first input 𝑢0 is applied
to the system after a solution has been obtained. To be able to define the weighting matrices
𝑄, 𝑅 and 𝑃 as parameters, first we define them as sdpvars and then tell optmizerFORCES that
they are parameters:

% Cost matrices - these will be parameters later
Q = sdpvar(nx);
R = sdpvar(nu);
P = sdpvar(nx);

% [... formulate MPC problem in YALMIP ...]

% Define parameters and outputs
codeoptions = getOptions('parametricCost_solver'); % give solver a name
parameters = { X(:,1), Q, R, P };
parameterNames = { 'xinit', 'Q', 'R', 'P' };
outputs = U(:,1) ;
outputNames = {'controlInput'};
controller = optimizerFORCES(const, cost, codeoptions, parameters, outputs,␣
→˓parameterNames, outputNames);

You can download the Matlab code of this variation to try it out for yourself from https://raw.
githubusercontent.com/embotech/Y2F/master/examples/mpc_parametric_cost.m.

11.2.8 Variation 2: Time-varying dynamics

Another possible variation is if we consider the state-space dynamics matrices 𝐴 and 𝐵 as
parameters, so that we can change them after the code generation. The following problem
is solved at each time step:

minimize 𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ �̄�

𝑢 ≤ 𝑢𝑖 ≤ �̄�

As usual, this problem is also parametric in the initial state 𝑥 and the first input 𝑢0 is applied to
the system after a solution has been obtained. To be able to define the state-space dynamics
matrices 𝐴 and 𝐵 as parameters, first we define them as sdpvars and then tell optmizerFORCES
that they are parameters:

A = sdpvar(nx,nx,'full'); % system matrix - parameter
B = sdpvar(nx,nu,'full'); % input matrix - parameter

(continues on next page)

154 Chapter 11. Examples

https://raw.githubusercontent.com/embotech/Y2F/master/examples/mpc_parametric_cost.m
https://raw.githubusercontent.com/embotech/Y2F/master/examples/mpc_parametric_cost.m

FORCESPRO User Manual

(continued from previous page)

% [... formulate MPC problem in YALMIP ...]

% Define parameters and outputs
codeoptions = getOptions('parametricDynamics_solver'); % give solver a name
parameters = { x0, A, B };
parameterNames = { 'xinit', 'Amatrix', 'Bmatrix' };
controller = optimizerFORCES(const, cost, codeoptions, parameters, U(:,1),␣
→˓parameterNames, {'u0'});

You can download the Matlab code of this variation to try it out for yourself from https://raw.
githubusercontent.com/embotech/Y2F/master/examples/mpc_parametric_dynamics.m.

11.2.9 Variation 3: Time-varying constraints

One final variation is if we consider the constraint inequalities as parameters, so that we can
change them after the code generation. The inequalities are defined by a time-varying 2 × 2
matrix that is defined by 2 parameters:

𝑅𝑘𝑥 ≤ 𝑅𝑘�̄�

where 𝑘 is the simulation step and the rotation matrix is defined by:

𝑅𝑘 =

[︂
cos(𝑘𝑤) − sin(𝑘𝑤)
sin(𝑘𝑤) cos(𝑘𝑤)

]︂
=

[︂
𝑟1 −𝑟2
𝑟2 𝑟1

]︂
where 𝑘 is the simulation step and 𝑤 a fixed number. Overall, the following problem is solved
at each time step:

minimize 𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ �̄�

𝑢 ≤ 𝑢𝑖 ≤ �̄�

𝑅𝑘𝑥𝑖 ≤ 𝑅𝑘�̄�

As usual, this problem is also parametric in the initial state 𝑥 and the first input 𝑢0 is applied
to the system after a solution has been obtained. To be able to define the rotation matrix 𝑅𝑘
as a parameter, first we define 𝑟1 and 𝑟2 as sdpvars and then tell optmizerFORCES that they are
parameters:

sdpvar r1 r2 % parameters for rotation matrix
R = [r1, -r2; r2, r1];

% [... formulate MPC problem in YALMIP ...]

% Define parameters and outputs
parameters = { X(:,1), r1, r2 };
parameterNames = { 'xinit', sprintf('cos(k*%4.2f)',w), sprintf('sin(k*%4.2f)',w) };
outputs = U(:,1);
outputNames = {'u0'};
controller = optimizerFORCES(const, cost, codeoptions, parameters, outputs,␣
→˓parameterNames, outputNames);

You can download the Matlab code of this variation to try it out for yourself from https://raw.
githubusercontent.com/embotech/Y2F/master/examples/mpc_parametric_inequalities.m.

Chapter 11. Examples 155

https://raw.githubusercontent.com/embotech/Y2F/master/examples/mpc_parametric_dynamics.m
https://raw.githubusercontent.com/embotech/Y2F/master/examples/mpc_parametric_dynamics.m
https://raw.githubusercontent.com/embotech/Y2F/master/examples/mpc_parametric_inequalities.m
https://raw.githubusercontent.com/embotech/Y2F/master/examples/mpc_parametric_inequalities.m

FORCESPRO User Manual

11.3 Y2F interface: Trajectory Optimization for Quadrotor
Flight

• Defining the problem parameters

• Defining the MPC problem

• Generating a solver

• Calling the generated solver

• Results

This is a more complex example optimizing the trajectory of a quadrotor within safe flight cor-
ridors. It follows the formulation give in S. Liu et al., “Planning Dynamically Feasible Trajecto-
ries for Quadrotors Using Safe Flight Corridors in 3-D Complex Environments,” IEEE Robotics
and Automation Letters, vol. 2, no. 3, pp. 1688-1695, July 2017 and makes the following as-
sumptions:

• The system is differentially flat, with flat outputs [𝑥, 𝑦, 𝑧, 𝜓]𝑇

• Piece-wise trajectory constrained by polytopes for each piece

• Trajectory segment parametrized as 𝑛-th order polynomial in time, separable in states

Based on those assumptions, the following convex QP problem needs to be solved in real-
time:

argmin
Φ

𝐽 =

𝑁−1∑︁
𝑖=0

Δ𝑡𝑖∫︁
0

⃦⃦⃦⃦
⃦ d4

d𝑡4
Φ𝑖(𝑡)

⃦⃦⃦⃦
⃦
2

d𝑡

subject to
d𝑘

d𝑡𝑘
Φ𝑖(∆𝑡𝑖) =

d𝑘

d𝑡𝑘
Φ𝑖+1(0) 𝑘 = 0, . . . , 4

𝐴𝑇𝑖 Φ𝑖(𝑡𝑠) < 𝑏𝑖 𝑡𝑠 = 0,∆𝑡𝑠, 2∆𝑡𝑠, . . . 𝑡𝑖+1 − 𝑡𝑖

Φ(𝑡) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Φ0(𝑡− 𝑡0) 𝑡0 ≤ 𝑡 < 𝑡1

Φ1(𝑡− 𝑡1) 𝑡1 ≤ 𝑡 < 𝑡2
...
Φ𝑁−1(𝑡− 𝑡𝑁−1) 𝑡𝑁−1 ≤ 𝑡 < 𝑡𝑁

with

Φ𝑖(𝑡) =

⎡⎢⎢⎣
𝑥Φ𝑖(𝑡)

𝑦Φ𝑖(𝑡)

𝑧Φ𝑖(𝑡)

𝜓Φ𝑖(𝑡)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑥𝑐

0
𝑖 𝑥𝑐

1
𝑖 𝑥𝑐

2
𝑖 . . . 𝑥𝑐

𝑛
𝑖

𝑦𝑐
0
𝑖 𝑦𝑐

1
𝑖 𝑦𝑐

2
𝑖 . . . 𝑦𝑐

𝑛
𝑖

𝑧𝑐
0
𝑖 𝑧𝑐

1
𝑖 𝑧𝑐

2
𝑖 . . . 𝑧𝑐

𝑛
𝑖

𝜓𝑐
0
𝑖 𝜓𝑐

1
𝑖 𝜓𝑐

2
𝑖 . . . 𝜓𝑐

𝑛
𝑖

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1
𝑡
𝑡2

...
𝑡𝑛

⎤⎥⎥⎥⎥⎥⎦
This problem has 4 * (𝑛 + 1) optimization variables. Here we present a problem formulation
with FORCESPRO’s Y2F interface for YALMIP and also show how you can use the resulting
controller for simulation.

You can download the code of this example to try it out for yourself (in MATLAB) by clicking
here.

Important: Make sure to have YALMIP installed correctly (run yalmiptest to verify this). Visu-
alizations of this example additionally require the MPT Toolbox and Matlab interface for the
CDD solver to be installed.

156 Chapter 11. Examples

FORCESPRO User Manual

11.3.1 Defining the problem parameters

At the top of the example file, basic parameters are defined such number of states, the order
of the piece-wise polynomial basis functions and number of samples to check the constraints:

%% Parameters
nStates = 4; % [-] Number of states

% Flat outputs [x position; y position; z position; yaw angle]
n = 8; % [-] Order of piece-wise polynomial used as basis function
nSample = 5; % [-] Number of intermediate samples (where constraints are checked)

withVisualization = true; % [-] Bool if MPT Toolbox for visualization is installed
bbConstr = false; % [-] true: bounding-box constraints (separable in␣
→˓coordinates) (n=7,8,9)

% false: Polyhedron along path (non-separable␣
→˓polytopic constraints) (n=8)

The quadrotor is supposed to fly along piece-wise segments in 3D space that are defined by
a list of way points:

%% WayPoints and time needed for segment
% Simple case with 3 segments
p0 = [0;0;0;0];
p1 = [1;1;1;0];
p2 = [3;1;1;pi];
p3 = [4;2;2;pi];

These waypoints are then used to construct artificial polyhedrons around each path segment.

11.3.2 Defining the MPC problem

Afterwards, YALMIP variables Z and T are defined, gathering the trajectory parameters and
the trajectory positions, respectively.

%% YALMIP Variables
Z = sdpvar((n+1)*nStates,N,'full'); % Trajectory parameters: z0,z1,...,z{N-1}␣
→˓(columns of Z for N stages/segm.)

% z_i = [c_0^x,c_1^x,...,c_n^x, ... (n-th␣
→˓order polynomials -> n+1 coeff.

% c_0^y,c_1^y,...,c_n^y, ...
% c_0^z,c_1^z,...,c_n^z, ...
% c_0^phi,c_1^phi,...,c_n^phi]
% where [x,y,z,phi] are the flat outputs (# of␣

→˓flat outputs == nStates)
T = sdpvar(nStates,N+1,'full'); % Trajcetory positions used as parameters

Afterwards, the QP formulation is setup in YALMIP syntax, including the quadratic cost func-
tion as well as various constraints.

11.3.3 Generating a solver

We have now incrementally built up the cost and constr objects, which are both YALMIP
objects. Using the function optimizerFORCES to generate a solver named TrajOptQuadrotor
that will return the optimized coefficients 𝑧𝑜𝑝𝑡 as an output:

Chapter 11. Examples 157

FORCESPRO User Manual

%% Generate Solver
codeoptions = getOptions('TrajOptQuadrotor'); % solverName
codeoptions.optlevel = 3;
codeoptions.timing = 1;
codeoptions.BuildSimulinkBlock = 0;

controller = optimizerFORCES(constr, cost, codeoptions, T, Z, {'wayPoints'}, {'z_opt
→˓'});

That’s it! Y2F automatically figures out the structure of the problem and generates a solver.

11.3.4 Calling the generated solver

We can now use the TrajOptQuadrotor object to call the solver:

%% Solve
[out_opt, exitflags, info] = TrajOptQuadrotor({pathSegments});

Tip: Type help TrajOptQuadrotor to get more information about how to call the solver.

11.3.5 Results

The example also includes additional lines of code to illustrate the results.

Figure 11.9 illustrates the quadrotor flight in 3D, while Figure 11.10 shows the individual trajec-
tories in time.

Figure 11.9: Quadrotor flight in 3D (green line) including waypoints/segments (dark blue) and
bounding boxes (light blue); also projected onto each dimension.

158 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.10: Individual trajectories of the quadrotor flight in time for all three dimensions and
the angular orientation.

Chapter 11. Examples 159

FORCESPRO User Manual

11.4 Low-level interface: Active Suspension Control

• Introduction

• Disturbance Model: Speed Bump

• Implementation of Preview Information

• Comparison of Passive Vehicle and Active Suspension Control Using Preview Infor-
mation

11.4.1 Introduction

The concept of using future information, as described in the section How to Incorporate Pre-
view Information in the MPC Problem can be applied to more advanced systems. In this ex-
ample a driving vehicle is considered, equipped with sensors that measure the unevenness
of the road ahead as shown in the picture below.

Figure 11.11: Figure borrowed from [GörSch]

The preview information can be used to improve the riding comfort, i. e. minimize the heave,
pitch and roll accelerations, by actively controling the suspension of the vehicle. This example
is based on the reduced car model described in [GörSch]

The states 𝑥 of the system are ‘heave displacement’ 𝑧𝑏 [m], ‘pitch angle’ 𝜙 [rads], ‘roll angle’
𝜃 [rads], ‘heave velocity’ �̇�𝑏 [m/s], ‘pitch rate’ �̇� [rads/s] and ‘roll rate’ �̇� [rads/s]. The input 𝑢 [m]
to the system are the ‘active spring displacements’. The output 𝑦 is given by the ‘heave ac-
celeration’ 𝑧𝑏 [m/s2], the ‘pitch acceleration’ 𝜙 [m/s2] and the ‘roll acceleration’ 𝜃 [m/s2]. In the
reduced model, the input contains not only the active spring displacements but also the
measurements of the height profile of the upcoming road 𝑤 and its first derivative �̇�.

𝑥 :=

⎛⎜⎜⎜⎜⎜⎜⎝
heave displacement [m]

pitch angle [rads]
roll angle [rads]

heave velocity [m/s]
pitch rate [rads/s]
roll rate [rads/s]

⎞⎟⎟⎟⎟⎟⎟⎠
𝑢 :=

(︀
active spring displacements [m]

)︀
𝑦 :=

⎛⎝ heave acceleration [m/s2]
pitch acceleration [rads/s2]
roll acceleration [rads/s2]

⎞⎠
There are constraints on the actuators, i. e. minimal and maximal adjustment track, 𝑢 =
−0.04[𝑚] and 𝑢 = 0.04[𝑚]. This results in the following state space system:

�̇�(𝑡) = 𝐴𝑥(𝑡) +𝐵𝑢𝑢(𝑡) +𝐵𝑤

(︂
𝑤(𝑡)
�̇�(𝑡)

)︂
𝑦(𝑡) = 𝐶𝑥(𝑡) +𝐷𝑢(𝑡)

160 Chapter 11. Examples

FORCESPRO User Manual

In the following it is shown how the FORCESPRO MATLAB Interface can be used to design a
controller using preview information, substantially increasing the riding comfort compared
to a vehicle with a passive suspension. The discrete vehicle model is sampled at 0.025 [s] and
it is assumed that road preview information for 0.5 [s] (20 steps) is available to the controller.

11.4.2 Disturbance Model: Speed Bump

The vehicle is assumed to be driving at a constant speed of 5 [m/s] over a speed bump of
length 1 [m] with a height of 0.1 [m]. The disturbance in time domain is depicted on the right
side. The road bump only hits the front right wheel, while the front left wheel is not affected.
The same bump will hit the rear right wheel 1.12 [s] after it hits the front wheel.

11.4.3 Implementation of Preview Information

This is a linear MPC problem with lower and upper bounds on inputs and a terminal cost
term:

minimize 𝑥𝑇𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥𝑇𝑖 𝑄𝑥𝑖 + 𝑢𝑇𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖 +𝐵𝑤𝑤𝑖 +𝐵𝑤�̇�𝑖

𝑢 ≤ 𝑢𝑖 ≤ 𝑢

At each sampling instant the initial state 𝑥 and the preview information 𝑤𝑖 and �̇�𝑖 change,
and the first input 𝑢0 is typically applied to the system after an optimal solution has been
obtained.

% Parameters: First Equation RHS
parameter(1) = newParam('minusA_times_x0_minusBw_times_w_pre',1,'eq.c');
% Paramteres: Preview Information
parameter(2) = newParam('pre2_w',2,'eq.c');
...
parameter(n) = newParam('pren_w',n,'eq.c');
...
parameter(N) = newParam('preN_w',N,'eq.c');

As described in the section How to Incorporate Preview Information in the MPC Problem, the
parametric additive terms g, which corresponds to the term 𝐵𝑤𝑤𝑖 + 𝐵𝑤�̇�𝑖, has to be defined.
At each stage of the multistage problem, the ‘g’ term (containing the preview information)
in the equality constraint is different, therefore we have to define a parameter for each stage.
In the definition of the parameters, ‘pren_w’ represents the name of the term 𝐵𝑤𝑤𝑛 + 𝐵𝑤�̇�𝑛
at stage 𝑛 of the multistage problem. During runtime, the preview information is mapped to
these parameters.

𝑁 is the length of the prediction horizon which is set to be equal to the preview horizon. The
MATLAB code below, generates the function VEHICLE_MPC_withPreview that takes -𝐴𝑥 and the
additive term g as a calling argument and returns 𝑢0, which can then be applied to the system:

Chapter 11. Examples 161

FORCESPRO User Manual

%% MPC with Preview
% FORCESPRO multistage form
% assume variable ordering zi = [u{i-1}; x{i}] for i=1...N

% Parameters: First Eq. RHS
parameter(1) = newParam('minusA_times_x0_minusBw_times_w_pre’,1,'eq.c’);

stages = MultistageProblem(N);
for i = 1:N

% dimension
stages(i).dims.n = nx+nu; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = nu; % number of lower bounds
stages(i).dims.u = nu; % number of upper bounds

% cost
if(i == N)

stages(i).cost.H = blkdiag(R,P);
else

stages(i).cost.H = blkdiag(R,Q);
end
stages(i).cost.f = zeros(nx+nu,1);

% lower bounds
stages(i).ineq.b.lbidx = 1:nu; % lower bound acts on these indices
stages(i).ineq.b.lb = umin*ones(4,1); % lower bound for the input signal

% upper bounds
stages(i).ineq.b.ubidx = 1:nu; % upper bound acts on these indices
stages(i).ineq.b.ub = umax*ones(4,1); % upper bound for the input signal

% equality constraints
if(i < N)

stages(i).eq.C = [zeros(nx,nu), Ad];
end
stages(i).eq.D = [Bdu, -eye(nx)];

% Parameters for Preview
if(i < N)

parameter(i+1) = newParam(['pre’,num2str(i+1),’_w’],i+1,'eq.c’);
end

end

% define outputs of the solver
outputs(1) = newOutput('u0',1,1:nu);

% solver settings
codeoptions = getOptions('VEHICLE_MPC_withPreview');

% generate code
generateCode(stages,parameter,codeoptions,outputs);

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

162 Chapter 11. Examples

FORCESPRO User Manual

11.4.4 Comparison of Passive Vehicle and Active Suspension Control Us-
ing Preview Information

In Figure 11.12, Figure 11.13 and Figure 11.14, the accelerations in the direction heave, pitch and
roll respectively are depicted. The blue graphs represent the controlled outputs while the
red ones show the uncontrolled accelerations. One can see that the vertical dynamics of the
vehicle are reduced substantially. There are smaller maximal accelerations and also less time
is required to regulate the accelerations back to zero.

Figure 11.12: Acceleration in heave direction

Figure 11.13: Acceleration in pitch direction

Applying Model Predictive Control with Preview using FORCESPRO the riding comfort is im-
proved significantly with minimum effort for designing the controller and generating code
which can be deployed on any embedded automotive control unit.

The four graphs in Figure 11.15, Figure 11.16, Figure 11.17 and Figure 11.18 below show the input
signal on each of the four actuators. One can see that model predictive controller starts lifting
the front right part of the vehicle body as soon as the bump is in sight of the preview sensor,
i. e. at time 𝑡 = 0.3 [s]. This is 0.5 seconds, the length of the preview horizon, before the front
right wheel hits the bump at time 𝑡 = 0.8 [s]. This causes a better absorption of the shock and
therefore reduced accelerations. The input constraints are also satisfied and 𝑢 never exceeds
the admitted range.

Chapter 11. Examples 163

FORCESPRO User Manual

Figure 11.14: Acceleration in roll direction

Figure 11.15: Input front left actuator

Figure 11.16: Input front right actuator

Figure 11.17: Input rear left actuator

164 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.18: Input rear right actuator

11.5 Low-level interface: Robust estimation (Kalman filter)

• System Description

• Robust Kalman filter

• Simulation and Comparison

11.5.1 System Description

In this example we consider the water tank system depicted on the right. Tank 1 has one input
flow and one output flow. Also tank 2 has one input flow and one output flow. Tank 3 has two
input flows and one output flow. The system dynamics are represented via the first equation
below. As an output 𝑧 we have a measurement of the level of tank 1 and of the level of tank 3.

𝑥+ = 𝐴𝑥+𝐵𝑢+ 𝑣 =

⎛⎝1 − 𝛼1 0 0
0 1 − 𝛼2 0
𝛼+ 𝛼2 1 − 𝛼3

⎞⎠𝑥+

⎛⎝0.5
0.5
0

⎞⎠𝑢+ 𝑣

𝑧 = 𝐻𝑥+ 𝑤 + 𝑦 =

(︂
1 0 0
0 0 1

)︂
𝑥+ 𝑤 + 𝑦

The states of the system are 𝑥 =
(︀
𝑥1 𝑥2 𝑥3

)︀𝑇
‘𝑎𝑛𝑑𝑎𝑠𝑎𝑛𝑖𝑛𝑝𝑢𝑡𝑡ℎ𝑒𝑓𝑙𝑜𝑤 : 𝑚𝑎𝑡ℎ : ‘𝑢 is given. There

is a process noise 𝑣 and a measurement noise 𝑤, both are Gaussian Random Variables with
mean 0 and variance 𝑄 and 𝑅, i. e. 𝑣 ∼ 𝒩 (0, 𝑄) and 𝑤 ∼ 𝒩 (0, 𝑅). The sparse signal 𝑦, which is
used to model sensor failures, distorts the measurement signal additionally.

The goal of this example is to show, that the standard Kalman Filter is not working that good
anymore if sensor failures are present. There does not exist an analytic solution to the prob-
lem if the disturbance 𝑦 is present. Using the robust Kalman Filter, i. e. replacing the stan-
dard measurement update step with an extended optimization problem, which is solved by
FORCESPRO, the filter is robust against 𝑦 and the estimated states are much more accurate
compared to the standard Kalman Filter. To process the measurement data online, the opti-
mization problem has to be solved in a sufficiently short amount of time.

11.5.2 Robust Kalman filter

Recall that the standard Kalman Filter, which would be applied if disturbance signal 𝑦 were
not present, consists of two steps: First a prediction step is made, where a predicted stated
𝑥𝑝(𝑘) is calculated based on the estimated state 𝑥𝑚(𝑘−1). Additionally, the predicted variance
𝑃𝑝(𝑘) gets calculated in the prediction step. The measurement step returns the variance𝑃𝑚(𝑘)

Chapter 11. Examples 165

FORCESPRO User Manual

and the state esimate 𝑥𝑚(𝑘). This state estimate 𝑥𝑚(𝑘) is basically the solution of the optimiza-
tion problem

minimize 𝑤𝑇𝑅−1𝑤 + (𝑥− �̂�𝑝)
𝑇𝑃−1(𝑥− �̂�𝑝)

subject to 𝑧 = 𝐻𝑥+ 𝑤

In this example, we assume that out of 100 measurements the sensors of tank 1 gand tank
3 gives each 5 bogus signals. In order to make the state estimator robust against the sensor
failures 𝑦, we solve the following convex optimization problem at every time instance

minimize 𝑤𝑇𝑅−1𝑤 + (𝑥− �̂�𝑝)
𝑇𝑃−1(𝑥− �̂�𝑝) + 𝜆||𝑦||1

subject to 𝑧 = 𝐻𝑥+ 𝑤 + 𝑦

In the optimization problem 𝑤, 𝑥 and 𝑦 are optimization variables. The cost function of the
optimization problem is extended with the 𝑙1-penaltiy which is non-quadratic. The value 𝜆 ≥
0 is a tuning parameter. For 𝜆 large enough, the solution of the optimization problem has
𝑦 = 0 and therefore the estimates of the robust Kalman Filter coincides with the standard
Kalman Filter solution. This optimization problem can be transformed as described in here.
We transform this problem to the form required by FORCESPRO, which reads as

minimize
1

2
𝑧𝑇 �̃�𝑧 + 𝑓𝑇 𝑧

subject to 𝐷𝑧 = 𝑧

𝐴𝑧 ≤ 𝑏

where the optimization variable is given by 𝑧 =
(︀
𝑥𝑇 𝑤𝑇 𝑦𝑇 𝑒𝑇

)︀𝑇 . Please find below the
MATLAB code to generate the solver for the optimization problem with FORCESPRO. The
covariance matrix𝑃−1 is updated at every time step and therefore the problem can’t be solved
explicitly. In this problem three parameters need to be defined, which are𝐻 , 𝑓 - containing the
predicted covariance and the predicated state - and 𝑐 - contains the current measurement.

% Create multistage struct
stages = MultistageProblem(1);

% Dimension
[ny nx] = size(H);
nw = ny;
ne = ny;
stages(1).dims.n = nx+nw+ny+ne; % number of stage variables
stages(1).dims.r = ny; % number of equality constraints
stages(1).dims.p = 2*ne; % number of polytopic constraints

(continues on next page)

166 Chapter 11. Examples

FORCESPRO User Manual

(continued from previous page)

% Ploytopic bounds
stages(1).ineq.p.A = [zeros(ny,nx), zeros(ny,nw), lambda*eye(ny), -eye(ne);...

zeros(ny,nx), zeros(ny,nw), -lambda*eye(ny),
→˓ -eye(ne)];
stages(1).ineq.p.b = zeros(2*ne,1);

% Equality constraints
stages(1).eq.D = [H, eye(nw), eye(ny), zeros(ne)];

% Parameters
params(1) = newParam('H_i',1,'cost.H');
params(2) = newParam('f_i',1,'cost.f’);
params(3) = newParam('z_i',1,'eq.c');

% Output
outputs(1) = newOutput('x_hat_RKF',1,1:3);

% Code Generation
codeoptions = getOptions('Robust_KF');
generateCode(stages,params,codeoptions,outputs);

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

11.5.3 Simulation and Comparison

In the simulation the optimization problem has to be solved at every time instance. In the
prediction step the state 𝑥𝑝 is calculated based on the estimation of the current state. Also
the the variance is updated in every prediction step. In the measurement update step the
estimated state 𝑥𝑚 is calculated based on the predicted state, its predicted variance and the
current measurement 𝑧 by the function Robust_KF() generated by FORCESPRO.

for i = 2:(N+1)
% Prediction Step
x_p_RKF = Ak(:,:,i-1)*x_hat_RKF(:,i-1)+B*u(i-1);
P_p_RKF(:,:,i) = Ak(:,:,i-1)*P_hat_RKF(:,:,i-1)*Ak(:,:,i-1)' + Q;

% Measurement Update Step - Optimization Problem
problem.H_i = [2*inv(P_p_RKF(:,:,i)),zeros(nx,nw+ny+ne);...

zeros(ny,nx),2*R_inv,zeros(ny,ny+ne);...
zeros(ny+ne,nx+nw+ny+ne)];

problem.f_i = [-2*(inv(P_p_RKF)*x_p_RKF);...
zeros(nw,1);...
zeros(ny,1);...
ones(ne,1)];

problem.z_i = z(:,i);
[solverout,exitflag,info] = Robust_KF(problem);
solve_time(1,i-1) = info.solvetime;
x_hat_RKF(:,i) = solverout.x_hat_RKF;
P_hat_RKF(:,:,i) = P_p_RKF(:,:,i);

end

In the plots in Figure 11.19, Figure 11.20 and Figure 11.21 respectively, the estimated states are
depicted. The estimates calculated via the robust Kalman Filter, in blue, are much more ac-
curate then the standard approach. The peaks in the red line indicate sensor failures against
which the standard Kalman Filter is not robust.

Chapter 11. Examples 167

FORCESPRO User Manual

Figure 11.19: Estimated state 𝑥(1)

Figure 11.20: Estimated state 𝑥(2)

Figure 11.21: Estimated state 𝑥(3)

168 Chapter 11. Examples

FORCESPRO User Manual

The impact on the RMS error magnitude of the robust Kalman Filter can be seen in the plots in
Figure 11.22, Figure 11.23 and Figure 11.24. The magnitude of the robust Kalman Filter depicted
in blue, is reduced by ∼ 65% for state 1, ∼ 12% for state 2, ∼ 61% for state 3 (this values vary).
Applying online optimization with FORCESPRO improves the quality of the state estimations
significantly.

Figure 11.22: RMS error for 𝑥(1)

Figure 11.23: RMS error for 𝑥(2)

With FORCESPRO convex optimization can be embedded directly in signal processing algo-
rithms that run online, with strict real-time deadlines, even at rates of tens of kilohertz. In this
example the optimization problem is solved in ∼ 0.1𝑚𝑠.

11.6 Low-level interface: Spacecraft Rendezvous

• Introduction

• Model

• Constraints

• Objective

• Spacecraft Rendezvous Manoeuvers with and without 1-Norm Cost

Chapter 11. Examples 169

FORCESPRO User Manual

Figure 11.24: RMS error for 𝑥(3)

11.6.1 Introduction

This example uses the concepts described in the subsections HOW TO: Implement an MPC
Controller with a Time-Varying Dynamics and How to Implement 1-Norm and Infinity-Norm
Cost Functions.

The goal is to design a controller to perform a spacecraft rendezvous operation, where a
controlled chaser spacecraft is performing rendezvous with a passive target that is orbiting
around Mars. Using a time-varying prediction model allows to perform spacecraft maneou-
vers in elliptical orbits and allows the controller to be updated when the are changes in the
system parameters or control objectives. This example is based on the models described in
[HarMac14] and the references therein.

11.6.2 Model

The Yamanaka-Ankersen (Y-A) equations are used to describe the dynamics, where the six
states x of the system represent the relative position and velocity of the chaser with respect
to the target in the three dimensions. These equations apply in elliptical orbits, but are time-
varying in terms of the true anomaly, 𝑣, of the target, i.e. the model is given by

𝑥𝑘+1 = 𝐴(𝑣)𝑥𝑘 +𝐵(𝑣)𝑢𝑘

and the requirement is that the state at the end of the horizon is at the target. The plant input
is modeled as an impulsive change in velocity, such that

𝐵(𝑣) = 𝐴(𝑣)

(︂
0
𝐼3

)︂
You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

11.6.3 Constraints

The three impulsive control inputs can give a maximum change in velocity of 5 meters per
second along each axis. In addition, the chaser spacecraft is required to remain within a cone
of vision of 20 degrees from the target and must not go behind the target to facilitate the
docking maneuver.

170 Chapter 11. Examples

https://en.wikipedia.org/wiki/True_anomaly

FORCESPRO User Manual

11.6.4 Objective

The goal of the controller is to balance the following objectives:

• the chaser should be always as close as possible to the target,

• use as little fuel as possible to get there.

The second objective is more important, hence it is weighed higher. We consider two types of
cost functions: one where all the terms are weighed using standard quadratic penalties; and
one where the inputs are penalised using the 1-norm, which better reflects the propellant
consumption being directly proportional to delivered thrust and also attempts to minimise
the use of the actuators. In order to implement the 1-norm cost we need to add slack variables
and additional constraints as described in How to Implement 1-Norm and Infinity-Norm Cost
Functions.

The following code shows how to generate an MPC controller for the spacecraft rendezvous
problem with a time-varying model and a 1-norm penalty on the actuators.

%% MPC with Preview
% FORCESPRO multistage form
% assume variable ordering zi = [u{i-1}; x{i}, eu{i-1}] for i=1...N

% Parameters: First Eq. RHS
parameter(1) = newParam('minusA_times_x0’,1,'eq.c’);

stages = MultistageProblem(N);
for i = 1:N

% dimension
stages(i).dims.n = nx+2*nu; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = nu; % number of lower bounds
stages(i).dims.u = nu; % number of upper bounds
stages(i).dims.p = 3+2*nu; % number of polytopic constraints

% cost
stages(i).cost.H = blkdiag(zeros(nu),Q,zeros(nu));
stages(i).cost.f = [zeros(nu,1); -Q*xs; ones(nu,1)];

% lower bounds
stages(i).ineq.b.lbidx = 1:nu; % lower bound acts on these indices
stages(i).ineq.b.lb = umin*ones(4,1); % lower bound for the input signal

% upper bounds
stages(i).ineq.b.ubidx = 1:nu; % upper bound acts on these indices
stages(i).ineq.b.ub = umax*ones(4,1); % upper bound for the input signal

% polytopic bounds
stages(i).ineq.p.A = [zeros(3,nu), Hx, zeros(3,nu); ...

R, zeros(nu,nx), -eye(nu); ...
-R, zeros(nu,nx), -eye(nu)];

stages(i).ineq.p.b = [hx; R*us; -R*us];

% equality constraints
if(i < N)

params(end+1) = newParam(['C_',num2str(i)],i,'eq.C');
end
params(end+1) = newParam(['D_',num2str(i)],i,'eq.D');

(continues on next page)

Chapter 11. Examples 171

FORCESPRO User Manual

(continued from previous page)

if(i > 1)
params(end+1) = newParam(['pre’,num2str(i+1),’_w’],i+1,'eq.c’);

end

end

11.6.5 Spacecraft Rendezvous Manoeuvers with and without 1-Norm
Cost

The simulation describes a rendezvous maneover were the chaser starts 15km away from the
target spacecraft and the goal is to approach the target to within 1000 meter distance, while
respecting the constraints, to start the docking maneuver. The target is modeled as being
in a Keplerian orbit around Mars with an orbital radius of 3,600,000 meters. The controller
sampling time is 200s but the target and chaser dynamics are simulated in intervals of 1s for
illustration purposes. The plots in Figure 11.25 illustrates the behaviour of the controlled space-
craft with standard quadratic cost, while the plots in Figure 11.26 shows the behaviour of the
controller when the quadratic cost on the actuators is swapped with a 1-norm penalty. Notice
the sparsity in the actuation commands - the thrusters are only engaged when necessary to
keep the spacecraft within the cone of visibility of the target.

Figure 11.25: Behaviour with quadratic cost.

11.7 Low-level interface: DC/DC converter

172 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.26: Behaviour with cost given by 1-norm.

• Example Overview

• Special Requirements

• Introduction - Control of a DC/DC Converter

• Control Objective by Using Model Predictive Control

• Model Predictive Control Design via FORCESPRO MATLAB® Interface

• Simulation of the PLECS® Model with Model Predictive Control

• Comparison of Model Predictive Control and PI Control

11.7.1 Example Overview

The example starts by describing the power electronics of the DC/DC converter and how the
control oriented model of the system is derived. Then the potential advantages of model
predictive control over a conventional PI controller are discussed. Afterwards the design of
the MPC controller using FORCESPRO is presented. Finally, the simulation setup is explained
and the simulation results using PI and MPC are compared.

• Introduction: General introduction to the example.

• Control Objective: What can be gained by applying MPC with FORCESPRO.

• MPC via FORCESPRO: How to generate a solver with FORCESPRO for the power elec-
tronic converter.

• Simulation: Illustration on how to simulate the system with the generated controller.

• Comparison: Discussion of the results of the simulation.

Chapter 11. Examples 173

FORCESPRO User Manual

11.7.2 Special Requirements

For the simulation of the power electronic converter in this example PLEXIM provided their
software PLECS®. PLECS® is the tool for high-speed simulations of power electronic systems.
To simulate this example, PLECS Blockset with a viewer licence is required. Please follow the
instructions on how to install PLECS® below.

PLECS Blockset installation instructions:

• Download PLECS® Blockset installation script available from here.

• Download the required PLECS® Blockset package file here and save it in the same di-
rectory as the file installplecs.m.

• Run the file installplecs.m in MATLAB® from the command line.

• During the installation a dialog asks where to save ‘PLECS’. Choose a location which is
in the MATLAB® search path.

• During the installation a dialog asks for a license. Install the ‘viewer license’ as shown in
the figures below.

Once the installation is completed you are ready to simulate the files provided with this ex-
ample.

11.7.3 Introduction - Control of a DC/DC Converter

An important field of application for model predictive control are power electronic systems.
In this example a typical DC/DC converter which supplies an isolated DC voltage to a telecom
system is considered. Assume that the input voltage of the two-transistor forward converter,
depicted below on the left, is a constant voltage 𝑈𝐼𝑁 delivered by a previous PFC rectifier
stage. The load attached to the converter has an ohmic-capacitive characteristic.

This two-transistor forward converter can be modelled as a buck converter from which it is
more convenient to derive a control oriented model. The buck converter has only one switch
and the input voltage 𝑈𝑖𝑛 is the actual input voltage scaled by the transformer turn ratio. The
equivalent circuit is depicted on the right in the figure below.

The states of the control oriented model, which is used as a model for the predictive controller,
are the inductor current 𝑖𝐿 and the capacitor voltage 𝑢𝐶 . Further there are the input signal d
and the disturbances in the input voltage and the load current𝑤 =

(︀
𝑢𝑖𝑛 𝑖𝐿𝑜𝑎𝑑

)︀𝑇 . As an output
signal the states 𝑖𝐿 and 𝑢𝐶 as well as the output voltage uout are considered. The small signal

174 Chapter 11. Examples

https://www.plexim.com/
https://www.plexim.com/plecs/electrical

FORCESPRO User Manual

Figure 11.27: Based on the lecture material Power Electronic Systems II, Institute for Power
Electronic Systems, ETH Zürich

model (small signals are marked with a hat) in state-space form reads as:

𝑑

𝑑𝑡
�̂� =

(︂
−𝑅
𝐿 − 1

𝐿
1
𝐶 0

)︂
�̂�+

(︂
𝑈𝑖𝑛

𝐿
0

)︂
𝑑+

(︂
𝐷
𝐿 −𝑅

𝐿
0 − 1

𝐶

)︂
�̂�

𝑦 =

⎛⎝1 0
0 1
𝑅 1

⎞⎠ �̂�+

⎛⎝0 0
0 0
0 −𝑅

⎞⎠ �̂�

⇑⃦⇓
𝑑

𝑑𝑡
�̂� = 𝐴 · �̂�+𝐵1 · 𝑢+𝐵2 · �̂�

𝑦 = 𝐶 · �̂�+

(︂
𝐷2
𝐷4

)︂
· �̂�

11.7.4 Control Objective by Using Model Predictive Control

The converter should provide a constant output voltage 𝑈𝑂𝑢𝑡 of 60 V while delivering the
power required by the load. The nominal load current 𝐼𝐿𝑜𝑎𝑑 is 22 A. The input voltage 𝑈𝑖𝑛 is
constant at level 144 V, while the load resistance varies in the range [1.5, 5]Ω.

Conventionally the output voltage of the Buck Converter was controlled by a PI controller. In
the first plot below, the current 𝑖𝐿 in the inductor is shown, when the resistance in the load is
reduced from 5Ω to 1.5Ω, i. e. from upper bound to the lower bound of the possibly required
load resistance. The red curve represents the current in the inductor. Also the change in the
output voltage is depicted when changing the load resistance.

Figure 11.28: Inductor current vs. time

From Figure 11.28 and Figure 11.29 one can see that the current in the inductor has a high
overshoot and the output voltage has a relatively long settling time when a change in the
load resistance occures.

Chapter 11. Examples 175

FORCESPRO User Manual

Figure 11.29: Output voltage vs. time

Important: Some of the potential benefits of model predictive cotrol are the following

• Below it is shown that the size of the converter can be reduced by using a MPC controller
designed with FORCESPRO. With the MPC controller it will be possible to limit the cur-
rent in the inductor. With the warranty that the current does not exceed a certain upper
bound, a smaller inductor can be built in and the costs are reduced.

• Also the controller designed with FORCESPRO will calculate the optimal input at every
time step. The performance of the system is increased, i. e. less overshoot and faster
settling time.

11.7.5 Model Predictive Control Design via FORCESPRO MATLAB® Inter-
face

To design the FORCESPRO controller, the MPC setup has to be definded first. Below the re-
quirements are shown. A prediction horizon of 25 is choosen. In the cost function𝑅 penalizes
the deviation of the input signal from its reference value. The matrix𝑄penalizes the deviation
of the states from its reference values. Notice that𝑄 is defined such that a deviation of the in-
ductor current to its reference value is less penalized than a deviation of the output voltage to
its reference value. The input signal 𝑑 to the PWM is limited to [0, 1], while the inductor current
should not exceed a current of 42 A. This overshoot limitation concerns the average inductor
current. Below one can see, that this limit is exceeded by half of the currents peak-to-peak
value. The constraints are consistently defined with the model, i. e. a current reduction by -20
A and a current enhancement by 20 A is allowed at most. This is equivalent to a current in
the inductor in the range of [2, 42] A.

% MPC Setup
N = 25;
Q = [.01, 0; 0, 10];
R = 1;
nx = 2;
nu = 1;

% Constraints
umin = 0;
umax = 1;
xmin = -20;
xmax = 20;

Next, the multistage problem is formulated. In this example, there exists a linear term 𝑓 in
the cost function due to the variable load, i. e. the steady-state inductor current changes. The

176 Chapter 11. Examples

FORCESPRO User Manual

cost function therefore reads as

(𝑥+ − 𝑥𝑟𝑒𝑓)𝑇𝑄(𝑥+ − 𝑥𝑟𝑒𝑓) + (𝑢− 𝑢𝑟𝑒𝑓)𝑇𝑅(𝑢− 𝑢𝑟𝑒𝑓)

To solve the optimization problem, the reference values need to be re-calculated at every time
step. Below the parameters of the problem are marked red. The optimization variable of the
multistage problem is 𝑧𝑖 =

(︀
𝑢𝑖 𝑥𝑖+1

)︀𝑇 , where 𝑢 is the input signal given to the system.

minimize
𝑁∑︁
𝑖=1

1

2
𝑧𝑇𝑖 𝐻𝑖𝑧𝑖 + 𝑓𝑇𝑖 𝑧𝑖 (separable objective)

subject to 𝐷1𝑧1 = 𝑐1 (initial equality)
𝐶𝑖−1𝑧𝑖−1 +𝐷𝑖𝑧𝑖 = 𝑐𝑖 (inter-stage equality)
𝑧𝑖 ≤ 𝑧𝑖 ≤ 𝑧𝑖 (bounds)

In this example three parameters have to be given to the solver.

• parameter(1): Represents the right hand side of the initial equality of the problem in
standard form above.

• parameter(2): The linear term 𝑓 of the cost function. This term contains the reference
values of the states which are calculated based on the resistance of the load.

• parameter(3): Represents the right hand side of the inter-stage equality constraint for
the stages 𝑖 = 2 : 𝑁 of the problem.

Next to the parameters, the dimensions of the variables, the equality constraints and the
bounds have to be defined. The values defined in the MPC setup are added to the multi-
stage problem in the section ‘cost’. The terms in the equality constraints which are constant
over all stages are defined in the section ‘equality constraints’. After defining the output of
the solver and the solver settings, the code for the controller can be generated.

%% Multistage Problem
% get stages struct of length N
stages = MultistageProblem(N);

% RHS of first eq. constr. is a parameter: stages(1).eq.c = -A*x0 - B2*w
parameter(1) = newParam('minusAx0_minusB2w',1,'eq.c');

% Linear Term depends on x_ref and u_ref
parameter(2) = newParam('Linear_Term',1:N,'cost.f');

% RHS of equality constraints for remaining stages: stages(i).eq.c = - B2*w
parameter(3) = newParam('minusB2w',2:N,'eq.c');

for i = 1:N

% dimension
stages(i).dims.n = nx+nu; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = 2; % number of lower bounds
stages(i).dims.u = 2; % number of upper bounds

% cost
tages(i).cost.H = blkdiag(R,Q);

% lower bounds
stages(i).ineq.b.lbidx = 1:2; % lower bound acts on these indices
stages(i).ineq.b.lb = [umin; xmin]; % lower bound on input u and state iL

(continues on next page)

Chapter 11. Examples 177

FORCESPRO User Manual

(continued from previous page)

% upper bounds
stages(i).ineq.b.ubidx = 1:2; % upper bound acts on these indices
stages(i).ineq.b.ub = [umax; xmax]; % upper bound on input u and state iL

% equality constraints
if(i < N)

stages(i).eq.C = [zeros(nx,nu), Ad];
end
stages(i).eq.D = [Bd1, -eye(nx)];

end

% define outputs of the solver
outputs(1) = newOutput('u0',1,1);

% solver settings
codeoptions = getOptions('DCDC_FORCES_Pro_Controller');

% generate code
generateCode(stages,parameter,codeoptions,outputs);

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

11.7.6 Simulation of the PLECS® Model with Model Predictive Control

After the code is generated, the FORCESPRO Simulink® block can be added to the
model DCDC_FORCES_Pro_viewer.slx as shown in the figure below (copy/paste it from the
file DCDC_FORCES_Pro_Controllercompact_lib.mdl in the folder DCDC_FORCES_Pro_Controller/
Interface generated by FORCESPRO).

The controller has a frequency of 100 kHz. To simulate the system with a time step of 1𝑒− 7𝑠,
rate transition blocks are used. Below the Simulink® model DC_DC_FORCES_Pro.slx with the
PLECS® circuit and the FORCESPRO controller is depicted.

In the grey box in the model depicted above, the three parameters which are the input to the
FORCESPRO controller, are calculated.

178 Chapter 11. Examples

FORCESPRO User Manual

• parameter(1): The right hand side of the initial equality constraint is −𝐴𝑑 · 𝑥−𝐵𝑑2 · 𝑤.

• parameter(2): For the linear term of the cost function the reference values for the states
and the input signal need to be calculated.

The reference values are calculated by solving the linear system(︂
𝐴𝑑− 𝐼 𝐵𝑑1
𝐶𝑑2 𝐷𝑑3

)︂
·
(︂
𝑥𝑟𝑒𝑓
𝑢𝑟𝑒𝑓

)︂
=

(︂
−𝐵𝑑2 · 𝑤

𝑈𝑜𝑢𝑡,𝑟𝑒𝑓 −𝐷𝑑4 · 𝑤

)︂
which follows from the system equations in steady-state. To calculate the linear term f the
reference values are plugged into the linear term 𝑓 =

(︀
−𝑢𝑟𝑒𝑓 ·𝑅 −𝑥𝑇𝑟𝑒𝑓 ·𝑄

)︀𝑇 , which is equal
to

𝑓 =

(︂
𝐴𝑑− 𝐼 𝐵𝑑1
𝐶𝑑2 𝐷𝑑3

)︂−1

·
(︂

0 −𝐵𝑑2
1 −𝐷𝑑4

)︂
·
(︂
𝑈𝑜𝑢𝑡,𝑟𝑒𝑓

𝑤

)︂
·
(︂

0 −𝑅
−𝑄 0

)︂
The matrices in the derivation above are explained in more detail in the system presented in
the code available for this example.

• parameter(3) is equal to −𝐵𝑑2 · 𝑤.

11.7.7 Comparison of Model Predictive Control and PI Control

In the Figure 11.30 and Figure 11.31 below the evolution of the inductor current and the output
voltage are compared when controlling the system with PI and with the MPC controller de-
signed using FORCESPRO. It can be seen that the MPC controller is able to keep the inductor
current within the limits defined above. However, this limits the tracking speed of the output
voltage in the corresponding time interval. Overall, the tracking performance of the output
voltage is increased compared to the baseline PI controller.

Figure 11.30: Inductor current vs. time

Figure 11.31: Output voltage vs. time

Chapter 11. Examples 179

FORCESPRO User Manual

11.8 High-level interface: Basic example

• Defining the problem data

• Defining the MPC problem

• Generating a solver

• Calling the generated solver

• Simulation

• Results

Consider the following linear MPC problem with lower and upper bounds on state and inputs,
and a terminal cost term:

minimize 𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ �̄�

𝑢 ≤ 𝑢𝑖 ≤ �̄�

This problem is parametric in the initial state 𝑥 and the first input 𝑢0 is typically applied to the
system after a solution has been obtained.

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

11.8.1 Defining the problem data

Let’s define the known data of the MPC problem, i.e. the system matrices 𝐴 and 𝐵, the pre-
diction horizon 𝑁 , the stage cost matrices 𝑄 and 𝑅, the terminal cost matrix 𝑃 , and the state
and input bounds:

%% system
A = [1.1 1; 0 1];
B = [1; 0.5];
[nx,nu] = size(B);

%% MPC setup
N = 10;
Q = eye(nx);
R = eye(nu);
if(exist('dlqr','file'))

[~,P] = dlqr(A,B,Q,R);
else

P = 10*Q;
end
umin = -0.5; umax = 0.5;
xmin = [-5, -5]; xmax = [5, 5];

11.8.2 Defining the MPC problem

Let’s now dive in right into the problem formulation:

180 Chapter 11. Examples

FORCESPRO User Manual

%% FORCES multistage form
% assume variable ordering zi = [ui; xi] for i=0...N

% dimensions
model.N = 11; % horizon length N+1
model.nvar = 3; % number of variables
model.neq = 2; % number of equality constraints

% objective
model.objective = @(z) z(1)*R*z(1) + [z(2);z(3)]'*Q*[z(2);z(3)];
model.objectiveN = @(z) [z(2);z(3)]'*P*[z(2);z(3)];

% equalities
model.eq = @(z) [A(1,:)*[z(2);z(3)] + B(1)*z(1);

A(2,:)*[z(2);z(3)] + B(2)*z(1)];

model.E = [zeros(2,1), eye(2)];

% initial state
model.xinitidx = 2:3;

% inequalities
model.lb = [umin, xmin];
model.ub = [umax, xmax];

11.8.3 Generating a solver

We have now populated model with the necessary fields to generate a solver for our problem.
Now we use the function FORCES_NLP to generate a solver for the problem defined by model
with the first state as a parameter:

%% Generate FORCES solver

% get options
codeoptions = getOptions('FORCESNLPsolver');
codeoptions.printlevel = 2;

% generate code
FORCES_NLP(model, codeoptions);

11.8.4 Calling the generated solver

Once all parameters have been populated, the MEX interface of the solver can be used to
invoke it:

problem.x0 = zeros(model.N*model.nvar,1);
problem.xinit = xinit;
[solverout,exitflag,info] = FORCESNLPsolver(problem);

Tip: Type help solvername to get more information about how to call the solver.

Chapter 11. Examples 181

FORCESPRO User Manual

11.8.5 Simulation

Let’s now simulate the closed loop over the prediction horizon 𝑁 :

%% simulate
x1 = [-4; 2];
kmax = 30;
X = zeros(2,kmax+1); X(:,1) = x1;
U = zeros(1,kmax);
problem.x0 = zeros(model.N*model.nvar,1);
for k = 1:kmax

problem.xinit = X(:,k);

[solverout,exitflag,info] = FORCESNLPsolver(problem);

if(exitflag == 1)
U(:,k) = solverout.x01(1);
solvetime(k) = info.solvetime;
iters(k) = info.it;

else
error('Some problem in solver');

end

%X(:,k+1) = A*X(:,k) + B*U(:,k);
X(:,k+1) = model.eq([U(:,k);X(:,k)])';

end

11.8.6 Results

The results of the simulation are presented in Figure 11.8. The plot on the top shows the sys-
tem’s states over time, while the plot on the bottom shows the input commands. We can see
that all constraints are respected.

182 Chapter 11. Examples

FORCESPRO User Manual

0 5 10 15 20 25 30

-5

0

5
states

0 5 10 15 20 25 30

-0.5

0

0.5
input

Figure 11.32: Simulation results of the states (top, in blue and red) and input (bottom, in blue)
over time. The state and input constraints are plotted in red dashed lines.

Chapter 11. Examples 183

FORCESPRO User Manual

11.9 High-level interface: Obstacle avoidance (MATLAB &
Python)

• Defining the MPC Problem

– Objective

– Matrix equality constraints

– Runtime Parameters

– Inequality constraints

– Dimensions

– Initial conditions

• Generating a solver

• Calling the generated solver

• Results

• Variation: External functions

In this example we illustrate the simplicity of the high-level user interface on a vehicle optimal
trajectory generation problem. The user can place an obstacle in front of the vehicle using an
interactive window and the car trajectory is automatically adjusted.

In particular, we use a kinematic bicycle model described by a set of ordinary differential
equations (ODEs):

�̇� = 𝑣 cos(𝜃 + 𝛽)

�̇� = 𝑣 sin(𝜃 + 𝛽)

�̇� =
𝐹

𝑚

𝜃 =
𝑣

𝑙𝑟
sin(𝛽)

�̇� = 𝜑

with:

𝛽 = arctan(
𝑙𝑟

𝑙𝑟 + 𝑙𝑓
tan(𝛿))

The model consists of five differential states: 𝑥 and 𝑦 are the Cartesian coordinates of the car,
and 𝑣 is the linear velocity. The angles 𝜃 and 𝛿 denote the heading angle of the car and its
steering anlge. Next, there are two control inputs to the model: the acceleration force 𝐹 and
the steering rate 𝜑. The angle 𝛽 describes the direction of movement of the car’s center of
gravity relative to the heading angle 𝜃. The remaining three constant paramenters of the
system are the car mass 𝑚 = 1 kg, and the lengths 𝑙𝑟 = 0.5 m and 𝑙𝑓 = 0.5 m specifying the
distance from the car’s center of gravity to the rear wheels and the front wheels, respectively.

The trajectory of the vehicle will be defined as an NLP. First, we define stage variable 𝑧 by
stacking the input and differential state variables:

𝑧 = [𝐹, 𝜑, 𝑥, 𝑦, 𝑣, 𝜃, 𝛿]⊤

You can find the code of this example to try it out for yourself in the examples folder that comes
with your client.

184 Chapter 11. Examples

FORCESPRO User Manual

11.9.1 Defining the MPC Problem

Objective

In this example the cost function provided by model.objective is the same for all stages. We
have a target position (3, 0) and we want to minimize the distance of the car to that point.
Therefore, the distance is penalized with linear costs. Plus, some small quadratic costs are
added to the inputs 𝐹 and 𝑠, i.e.:

𝑓(𝑧) = 100|𝑧3 − 0| + 100|𝑧4 − 3| + 0.1𝑧21 + 0.01𝑧22

The stage cost function is coded in MATLAB and Python as the following function:

Matlab

Python

model.objective = @objective

function f = objective(z)
F = z(1);
phi = z(2);
x = z(3)
y = z(4);
f = 100*abs(x-0) + 100*abs(y-3) + 0.1*F^2 + 0.01*phi^2;

end

model = forcespro.nlp.SymbolicModel() # create empty model
model.objective = lambda z: 100 * casadi.fabs(z[2] - 0.) \

+ 100 * casadi.fabs(z[3] - 3.) \
+ 0.1 * z[0]**2 + 0.01 * z[1]**2

Matrix equality constraints

The matrix equality constraints model.eq in this example result from the vehicle’s dynamics
given above. First, the continuous dynamic equations are implemented as follows:

Matlab

Python

function [xDot] = continuousDynamics(x,u)
% state x = [xPos,yPos,v,theta,delta], input u = [F, phi]

% set physical constants
l_r = 0.5; % distance rear wheels to center of gravity of the car
l_f = 0.5; % distance front wheels to center of gravity of the car
m = 1.0; % mass of the car

% set parameters
beta = atan(l_r/(l_f + l_r) * tan(x(5)));

% calculate dx/dt
xDot = [x(3) * cos(x(4) + beta); % dxPos/dt = v*cos(theta+beta)

x(3) * sin(x(4) + beta); % dyPos/dt = v*cos(theta+beta)
u(1)/m; % dv/dt = F/m
x(3)/l_r * sin(beta); % dtheta/dt = v/l_r*sin(beta)
u(2)]; % ddelta/dt = phi

end

Chapter 11. Examples 185

FORCESPRO User Manual

def continuous_dynamics(x, u):
""" state x = [xPos,yPos,v,theta,delta], input u = [F,phi]"""

set physical constants
l_r = 0.5 # distance rear wheels to center of gravitiy of the car
l_f = 0.5 # distance front wheels to center of gravitiy of the car
m = 1.0 # mass of the car

set parameters
beta = casadi.arctan(l_r/(l_f + l_r) * casadi.tan(x[4]))

calculate dx/dt
return np.array([x[2] * casadi.cos(x[3] + beta), # dxPos/dt = v*cos(theta+beta)

x[2] * casadi.sin(x[3] + beta), # dyPos/dt = v*sin(theta+beta)
u[0] / m, # dv/dt = F/m
x[2]/l_r * casadi.sin(beta), # dtheta/dt = v/l_r*sin(beta)
u[1]]) # ddelta/dt = phi

Now, these continuous dynamics are discretized using an explicit Runge-Kutta integrator of
order 4 as shown below. Note that the function RK4 is included in the FORCESPRO client
software.

Matlab

Python

integrator_stepsize = 0.1;
% z(3:7) = states x, z(1:2) = inputs u
model.eq = @(z) RK4(z(3:7), z(1:2), @continuousDynamics, integrator_stepsize);

integrator_stepsize = 0.1
z[2:7] = states x, z[0:2] = inputs u
model.eq = lambda z: forcespro.nlp.integrate(continuous_dynamics, z[2:7], z[0:2],

integrator=forcespro.nlp.integrators.RK4,
stepsize=integrator_stepsize)

As a last step, the indices of the left hand side of the dynamical constraint are defined. For
efficiency reasons, make sure the matrix has structure [0 I].

Matlab

Python

model.E = [zeros(5,2), eye(5)];

model.E = np.concatenate([np.zeros((5,2)), np.eye(5)], axis=1)

Runtime Parameters

The user can place an obstacle to be avoided in front of the car. The x- and y-coordinates of
the position 𝑝 of this obstacle are considered as runtime parameters of the system.

𝑝 = [𝑝𝑥, 𝑝𝑦]⊤

The runtime parameters are the same for all stages. Their values will be set later on at runtime.

186 Chapter 11. Examples

FORCESPRO User Manual

Inequality constraints

The maneuver is subjected to a set of constraints, involving both the simple bounds:

−5 N ≤𝐹 ≤ 5 N

−40 deg/s ≤𝜑 ≤ 40 deg/s

−3 m ≤𝑥 ≤ 0 m

0 m ≤𝑦 ≤ 3 m

0 m/s ≤𝑣 ≤ 2 m/s

− inf ≤𝜃 ≤ inf

−0.48𝜋 rad ≤𝛿 ≤ 0.48𝜋 rad

as well the nonlinear nonconvex constraints in dependence of the runtime parameters 𝑝

1 m2 ≤𝑥2 + 𝑦2 ≤ 9 m2

0.72 m2 ≤(𝑥− 𝑝𝑥)2 + (𝑦 − 𝑝𝑦)2

The implementation of the simple bounds is given here:

Matlab

Python

% upper/lower variable bounds lb <= z <= ub
% inputs | states
% F phi x y v theta delta
model.lb = [-5.0, deg2rad(-40), -3., 0., 0., -inf, -0.48*pi];
model.ub = [+5.0, deg2rad(+40), 0., 3., 2., +inf, 0.48*pi];

upper/lower variable bounds lb <= z <= ub
inputs | states
F phi x y v theta delta
model.lb = np.array([-5., np.deg2rad(-40.), -3., 0., 0, -np.inf, -0.48*np.pi])
model.ub = np.array([+5., np.deg2rad(+40.), 0., 3., 2., np.inf, 0.48*np.pi])

The nonlinear constraint function ℎ with its bounds can be coded in MATLAB/Python as fol-
lows:

Matlab

Python

% General (differentiable) nonlinear inequalities hl <= h(x,p) <= hu
model.ineq = @(z,p) [z(3)^2 + z(4)^2; % x^2 + y^2

(z(3)-p(1))^2 + (z(4)-p(2))^2]; % (x-p_x)^2 + (y-p_y)^2

% Upper/lower bounds for inequalities
model.hu = [9, +inf]';
model.hl = [1, 0.7^2]';

General (differentiable) nonlinear inequalities hl <= h(x,p) <= hu
model.ineq = lambda z,p: np.array([z[2]**2 + z[3]**2, # x^2 + y^2

(z[2] - p[0])**2 + (z[3] - p[1])**2]) # (x-p_x)^2 +␣
→˓(y-p_y)^2

Upper/lower bounds for inequalities

(continues on next page)

Chapter 11. Examples 187

FORCESPRO User Manual

(continued from previous page)

model.hu = np.array([9, +np.inf])
model.hl = np.array([1, 0.7**2])

Dimensions

Furthermore, the number of variables, constraints and real-time parameters explained above
needs to be provided as well as the length of the multistage problem. For this example, we
chose to use 𝑁 = 50 stages in the NLP:

Matlab

Python

model.N = 50; % horizon length
model.nvar = 7; % number of variables
model.neq = 5; % number of equality constraints
model.nh = 2; % number of inequality constraint functions
model.npar = 2; % number of runtime parameters

model.N = 50 # horizon length
model.nvar = 7 # number of variables
model.neq = 5 # number of equality constraints
model.nh = 2 # number of inequality constraint functions
model.npar = 2 # number of runtime parameters

Initial conditions

The goal of the maneuver is to steer the vehicle from a set of initial conditions:

𝑥init = −2 m, 𝑦init = 0 m, 𝑣init = 0 m/s, 𝜃init = 0.5𝜋 rad, , 𝛿init = 0 rad

For the code generation, only the indices of the variables to which initial values will be applied
are required. This is coded as follows:

Matlab

Python

model.xinitidx = 3:7;

model.xinitidx = range(2,7)

11.9.2 Generating a solver

We have now populated model with the necessary fields to generate a solver for our problem.
Now we set some options for our solver and then use the function FORCES_NLP to generate a
solver for the problem defined by model:

Matlab

Python

188 Chapter 11. Examples

FORCESPRO User Manual

%% Define solver options
codeoptions = getOptions('FORCESNLPsolver');
codeoptions.maxit = 400; % Maximum number of iterations
codeoptions.printlevel = 0;
codeoptions.optlevel = 0; % 0: no optimization, 1: optimize for size,␣
→˓2: optimize for speed, 3: optimize for size & speed
codeoptions.printlevel = 0;
codeoptions.nlp.bfgs_init = 3.0*eye(7); % set initialization of the hessian␣
→˓approximation

%% Generate forces solver
FORCES_NLP(model, codeoptions);

Set solver options
codeoptions = forcespro.CodeOptions('FORCESNLPsolver')
codeoptions.maxit = 400 # Maximum number of iterations
codeoptions.printlevel = 0
codeoptions.optlevel = 0 # 0 no optimization, 1 optimize for␣
→˓size, 2 optimize for speed, 3 optimize for size & speed
codeoptions.nlp.bfgs_init = 3.0*np.identity(7) # initialization of the hessian␣
→˓approximation
codeoptions.noVariableElimination = 1.

Creates code for symbolic model formulation given above, then contacts server to␣
→˓generate new solver
solver = model.generate_solver(codeoptions)

11.9.3 Calling the generated solver

Once all parameters of the problem instance to be solved have been populated, the MEX
interface of the solver can be used to invoke it.

Matlab

Python

% Set initial guess to start solver from (here, middle of upper and lower bound)
x0i=[0.0,0.0,-1.5,1.5,1.,pi/4.,0.];
x0=repmat(x0i',model.N,1);
problem.x0=x0;

% Set initial condition
problem.xinit = [-2., 0., 0., deg2rad(90), 0.]';

% Set runtime parameters
params = [-1.5; 1.0]; # In this example, the user can change these parameters by␣
→˓clicking into an interactive window
problem.all_parameters = repmat(params,model.N,1);

% Time to solve the NLP!
[output,exitflag,info] = FORCESNLPsolver(problem);

% Make sure the solver has exited properly.
assert(exitflag == 1,'Some problem in FORCES solver');
fprintf('\nFORCES took %d iterations and %f seconds to solve the problem.\n',info.it,
→˓info.solvetime);

Chapter 11. Examples 189

FORCESPRO User Manual

Set initial guess to start solver from (here, middle of upper and lower bound)
x0i = np.array([0.,0.,-1.5,1.5,1.,np.pi/4.,0.])
x0 = np.transpose(np.tile(x0i, (1, model.N)))

set initial condition
xinit = np.transpose(np.array([-2.,0.,0.,np.deg2rad(90),0.]))

problem = {"x0": x0,
"xinit": xinit,
"xfinal": xfinal}

Set runtime parameters
params = np.array([-1.5,1.]) # In this example, the user can change these parameters␣
→˓by clicking into an interactive window
problem["all_parameters"] = np.transpose(np.tile(params,(1,model.N)))

Time to solve the NLP!
output, exitflag, info = solver.solve(problem)

Make sure the solver has exited properly.
assert exitflag == 1, "bad exitflag"
print("FORCES took {} iterations and {} seconds to solve the problem.".format(info.it,
→˓ info.solvetime))

11.9.4 Results

The goal is to find a trajectory that steers the vehicle from point A as close as possible to point
B while avoiding obstacles. The trajectory should also be feasible with respect to the vehi-
cle dynamics and its safety and physical limitations. The calculated vehicle’s trajectory in 2D
space is presented in Figure 11.33. The progress of the other states and the inputs over time is
shown in Figure 11.34. One can see that all constraints are respected. To try out other obstacle
positions you can run the example file on your own machine and click into the interactive
window.

You can find the code of this example in the examples folder that comes with your client.

11.9.5 Variation: External functions

In this variation, we want to supply the required functions through external functions in C. To
do so we have to provide the directory that contains said source files in the MATLAB code:

%% Define source file containing function evaluation code
model.extfuncs = 'C/myfevals.c';

We also need to include the two extern functions car_dyanmics and car_dyanmics_jacobian,
both contained in the car_dynamics.c file, through the other_srcs options field:

% add additional source files required - separate by spaces if more than 1
codeoptions.nlp.other_srcs = 'C/car_dynamics.c';

In Python, we need to switch to an ExternalFunctionModel if we intend to use external call-
backs. We give the main callback evaluating the objective function, equality constraints and
inequality constraints, using the set_main_function() , and supply any additional files required
by this callback using add_auxiliary().

190 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.33: The calculated trajectory of the car

Chapter 11. Examples 191

FORCESPRO User Manual

Figure 11.34: Development of the vehicle’s states and the system’s inputs over time

192 Chapter 11. Examples

FORCESPRO User Manual

model = forcespro.nlp.ExternalFunctionModel()

Define source file containing function evaluation code
model.set_main_callback("C/myfevals.c", function="myfevals")
model.add_auxiliary("C/car_dynamics.c")
One can also add a 'relative_to' argument specifiying the paths to be understood
relative to this file's location. if not supplied, paths are relative to the
current working directory in which this script is executed:
model.set_main_callback('c/myfevals.c', function="myfevals" relative_to=os.path.
→˓dirname(__file__))
model.add_auxiliary('c/car_dynamics.c', relative_to=os.path.dirname(__file__))

You can find the code of this example to try it out for yourself in the examples folder that comes
with your client.

Chapter 11. Examples 193

FORCESPRO User Manual

11.10 High-level interface: Indoor localization (MATLAB &
Python)

• Time of flight measurements

• Estimation error

• Minimize the error

• Implementation

The indoor localization problem is to estimate the position of a target by measurements from
various anchors with known location. Outdoors, this well known as GPS, while indoors other
frequency bands (and less accurate clocks) are usually used. In this example, we show how to
generate code for a position estimator that relies on time-of-flight (TOF) measurements (GPS
uses time-difference-of-arrival, TDOA). The latter can be easily implemented with FORCE-
SPRO as well with only minor changes to the code below.

Figure 11.35: Indoor localization example GUI.

You can find the code of this example to try it out for yourself in the examples folder that comes
with your client.

Running the code will produce an interactive window like in Figure 11.35.

194 Chapter 11. Examples

FORCESPRO User Manual

11.10.1 Time of flight measurements

Given 𝑁 anchors with known positions (𝑥𝑎𝑖 , 𝑦
𝑎
𝑖), 𝑖 = 1, . . . , 𝑁 , the distance to the target with

unknown position (𝑥, 𝑦) is given by:

𝑑𝑖 = 𝑐𝑡𝑖 =
√︁

(𝑥− 𝑥𝑎𝑖)2 + (𝑦 − 𝑦𝑎𝑖)2

where 𝑡𝑖 is the time the signal from anchor 𝑖 travels at the speed 𝑐 = 299 792 458 m/s

11.10.2 Estimation error

Instead of the real distance, we work with squared distances to define the estimation error:

𝑒𝑖 = (𝑥− 𝑥𝑎𝑖)2 + (𝑦 − 𝑦𝑎𝑖)2 − 𝑑2𝑖

11.10.3 Minimize the error

The objective is a least-squares error function:

min
𝑥,𝑦

𝑁∑︁
𝑖=1

𝑒2𝑖

11.10.4 Implementation

The following Matlab/Python code generates C-code for implementing an optimizer for min-
imizing the least-squares error function from above. It takes the anchor positions and the
distance measurements, and returns the estimated position of the target.

Matlab

Python

%% This function generates the estimator
function generateEstimator(numberOfAnchors,xlimits,ylimits)
% Generates 2D decoding code for localization using FORCES NLP
% na: number of anchors
global na
na = numberOfAnchors;

%% NLP problem definition
% no need to change anything below
model.N = 1; % number of distance measurements
model.nvar = 2; % number of variables (use 3 if 3D)
model.npar = numberOfAnchors*3; % number of parameters: coordinates of anchors in␣

→˓2D, plus measurements
model.objective = @objective;
model.lb = [xlimits(1) ylimits(1)]; % lower bounds on (x,y)
model.ub = [xlimits(2) ylimits(2)]; % upper bounds on (x,y)

%% codesettings
codesettings = getOptions('localizationDecoder');
codesettings.printlevel = 0; % set to 2 to see some prints
% codesettings.server = 'http://winner10:2470';
codesettings.maxit = 50; % maximum number of iterations

(continues on next page)

Chapter 11. Examples 195

FORCESPRO User Manual

(continued from previous page)

%% generate code
FORCES_NLP(model, codesettings);

end

%% This function implements the objective
% We assume that the parameter vector p is ordered as follows:
% p(1:na) - x-coordinates of the anchors
% p(na+(1:na)) - y-coordinates of the anchors
% p(2*na+(1:na)) - distance measurements of the anchors
function obj = objective(z,p)
global na
obj=0;
for i = 1:na

obj = obj + ((p(i)-z(1))^2 + (p(i+na)-z(2))^2 - p(i+2*na)^2)^2;
end

end

def generate_estimator(number_of_anchors, xlimits, ylimits):
"""
Generates and returns a FORCESPRO solver that esimates a position based on
noisy measurement inputs.
"""

NLP problem definition

model = forcespro.nlp.SymbolicModel(1) # number of distance measurements
model.nvar = 2 # number of variables (use 3 if 3D)
model.npar = number_of_anchors * 3 # number of parameters: coordinates of␣

→˓anchors in 2D, plus measurements
model.objective = objective # objective is defined as it's own function below
model.lb = np.array([xlimits[0], ylimits[0]]) # lower bounds on (x,y)
model.ub = np.array([xlimits[1], ylimits[1]]) # upper bounds on (x,y)

FORCESPRO solver settings

codesettings = forcespro.CodeOptions()
codesettings.printlevel = 0 # set to 2 to see some prints
codesettings.maxit = 50 # maximum number of iterations

Generate a solver

solver = model.generate_solver(codesettings)

return solver

def objective(z, p):
"""
This function implements the objective to be minimized.

We assume that the parameter vector p is ordered as follows:

- p[0:(na-1)] - x-coordinates of the anchors
(continues on next page)

196 Chapter 11. Examples

FORCESPRO User Manual

(continued from previous page)

- p[na:(2*na-1)] - y-coordinates of the anchors
- p[(2*na):(3*na-1)] - distance measurements of the anchors

"""
obj = 0
for i in range(n):

obj += ((p[i] - z[0])**2 + (p[i + n] - z[1])**2 - p[i + 2*n]**2)**2
return obj

def distance(xa, xtrue, ya, ytrue):
return np.sqrt((xa - xtrue)**2 + (ya - ytrue)**2)

Chapter 11. Examples 197

FORCESPRO User Manual

11.11 High-level interface: Path tracking example (MATLAB)

• Defining the MPC Problem

– Objective

– Equality constraints

– Bounds

– Dimensions

• Generating a solver

• Calling the generated solver

– Choosing the Path

• Results

• Using the SQP Fast solver

In this example we illustrate the simplicity of the SQP_NLP API on a path-tracking problem.
We also illustrate the full workflow for the SQP Fast solver which must be tuned to the specific
application. See Using the SQP Fast solver for specifics on the workflow for the SQP Fast
solver. In every simulation step, the predicted trajectory of the car is optimized to follow a
set of path points, either an ellipse or an artificial racetrack. The example visualizes how the
predicted trajectory changes while the car moves along the path.

We use a kinematic bicycle model described by a set of ordinary differential equations (ODEs):

�̇� = 𝑣 cos(𝜃 + 𝛽)

�̇� = 𝑣 sin(𝜃 + 𝛽)

�̇� =
𝐹

𝑚

𝜃 =
𝑣

𝑙𝑟
sin(𝛽)

�̇� = 𝜑

with:

𝛽 = arctan

(︂
𝑙𝑟

𝑙𝑟 + 𝑙𝑓
tan(𝛿)

)︂
The model consists of five differential states: 𝑥 and 𝑦 are the Cartesian coordinates of the car,
and 𝑣 is the linear velocity. The angles 𝜃 and 𝛿 denote the heading angle of the car and its
steering angle, respectively. Next, there are two control inputs to the model: the longitudinal
acceleration force 𝐹 and the steering rate 𝜑. The angle 𝛽 describes the direction of movement
of the car’s center of gravity relative to the heading angle 𝜃. The remaining three constant
parameters of the system are the car mass 𝑚 = 1 kg, and the lengths 𝑙𝑟 = 0.5 m and 𝑙𝑓 = 0.5 m
specifying the distance from the car’s center of gravity to the rear wheels and the front wheels,
respectively.

The trajectory of the vehicle will be defined as an NLP. First, we define stage variable 𝑧 by
stacking the input and differential state variables:

𝑧 = [𝐹, 𝜑, 𝑥, 𝑦, 𝑣, 𝜃, 𝛿]⊤

You can find the code of this example (both for the SQP solver using the general and fast QP
solver) in the examples folder that comes with your client.

198 Chapter 11. Examples

FORCESPRO User Manual

11.11.1 Defining the MPC Problem

Objective

In this example the cost function is the same for all stages except for the last stage N. The
objective of this example is to follow a set of path points. At runtime, a target position 𝑝𝑖 for
each stage 𝑖 is provided. Each point consists of a x- and a y-coordinate:

𝑝𝑖 = [𝑝𝑖,𝑥, 𝑝𝑖,𝑦]⊤

The goal is to minimize the distance of the car to these target points. The distance is penalized
with quadratic costs. Plus, some small quadratic costs are added to the inputs 𝐹 and 𝑠, i.e.:

𝑓(𝑧, 𝑝𝑖) = 200(𝑧3 − 𝑝𝑖,𝑥)2 + 200(𝑧4 − 𝑝𝑖,𝑦)2 + 0.2𝑧21 + 101𝑧22

Since all cost terms are quadratic and summed up, we can formulate the objective as a least
squares problem:

𝑓(𝑧, 𝑝𝑖) =
1

2
||𝑟(𝑧, 𝑝𝑖)||22

𝑟(𝑧, 𝑝𝑖) = [
√

200(𝑧3 − 𝑝𝑖,𝑥),
√

200(𝑧4 − 𝑝𝑖,𝑦),
√

0.2𝑧1,
√

10.0𝑧2]⊤

The stage cost function is coded in MATLAB as the following function:

Matlab

model.LSobjective = @(z,p)LSobj(z,p,I);

function [r] = LSobj(z,currentTarget, I)
% Least square costs on deviating from the path and on the inputs
% currentTarget = point on path that is tracked in this stage

r = [sqrt(200.0)*(z(I.xPos)-currentTarget(1)); % costs for deviating from the␣
→˓path in x-direction

sqrt(200.0)*(z(I.yPos)-currentTarget(2)); % costs for deviating from the␣
→˓path in y-direction

sqrt(0.2)*z(I.FLon); % penalty on input FLon
sqrt(10.0)*z(I.steeringRate)]; % penalty on input steeringRate

end

Note that using the model.LSobjective option instead of model.objective allows you to try out
the gauss-newton method for the hessian approximation.

For the last stage, the terminal costs are slightly increased by adapting the weighting factors:

𝑓(𝑧, 𝑝𝑖) = 400(𝑧3 − 𝑝𝑖,𝑥)2 + 400(𝑧4 − 𝑝2𝑖,𝑦) + 0.2𝑧21 + 10.0𝑧22

The code looks a follows:

Matlab

model.LSobjectiveN = @(z,p)LSobjN(z,p,I);

function [r] = LSobjN(z,currentTarget, I)
% Increased least square costs for last stage on deviating from the path and on the␣
→˓inputs
% currentTarget = point on path that is tracked in this stage

r = [sqrt(400.0)*(z(I.xPos)-currentTarget(1)); % costs for deviating from the␣
→˓path in x-direction

(continues on next page)

Chapter 11. Examples 199

FORCESPRO User Manual

(continued from previous page)

sqrt(400.0)*(z(I.yPos)-currentTarget(2)); % costs for deviating from the␣
→˓path in y-direction

sqrt(0.2)*z(I.FLon); % penalty on input FLon
sqrt(10.0)*z(I.steeringRate)]; % penalty on input steeringRate

end

Equality constraints

The equality constraints model.eq in this example result from the vehicle’s dynamics given
above. First, the continuous dynamic equations are implemented as follows:

Matlab

function [xDot] = continuousDynamics(x,u,I)

% Number of inputs is needed for indexing
nu = numel(I.inputs);

% Set physical constants
l_r = 0.5; % Distance rear wheels to center of gravity of the car
l_f = 0.5; % Distance front wheels to center of gravity of the car
m = 1.0; % Mass of the car

% Set parameters
beta = atan(l_r/(l_r + l_f) * tan(x(I.steeringAngle-nu)));

% Calculate dx/dt
xDot = [x(I.velocity-nu) * cos(x(I.heading-nu) + beta); % dxPos/dt =␣
→˓v*cos(theta+beta)

x(I.velocity-nu) * sin(x(I.heading-nu) + beta); % dyPos/dt =␣
→˓v*cos(theta+beta)

u(I.FLon)/m; % dv/dt = F/m
x(I.velocity-nu)/l_r * sin(beta); % dtheta/dt = v/l_

→˓r*sin(beta)
u(I.steeringRate)]; % ddelta/dt = phi

end

Now, these continuous dynamics are discretized using an explicit Runge-Kutta integrator of
order 4 as shown below. Note that the function RK4 is included in the FORCESPRO client
software.

Matlab

timeStep = 0.1;
model.eq = @(z) RK4(z(I.states), z(I.inputs), @(x,u)continuousDynamics(x,u,I),...

timeStep);

As a last step, the indices of the left hand side of the dynamical constraint are defined. For
efficiency reasons, make sure the matrix has structure [0 I].

Matlab

model.E = [zeros(nStates,nInputs), eye(nStates)];

200 Chapter 11. Examples

FORCESPRO User Manual

Bounds

All variables except the heading angle 𝜃 are bounded:

−5 N ≤𝐹 ≤ 5 N

−90 deg/s ≤𝜑 ≤ 90 deg/s

−100 m ≤𝑥 ≤ 100 m

−100 m ≤𝑦 ≤ 100 m

0 m/s ≤𝑣 ≤ 5 m/s

− inf ≤𝜃 ≤ inf

−50 deg ≤𝛿 ≤ 50 deg

The implementation of the simple bounds is given here:

Matlab

% Upper/lower variable bounds lb <= z <= ub
% inputs | states
% FLon steeringRate xPos yPos velocity heading steeringAngle
model.lb = [-5., deg2rad(-90), -100., -100., 0., -inf, deg2rad(-50)];
model.ub = [+5., deg2rad(90), 100., 100., 5., +inf, deg2rad(50)];

Dimensions

Furthermore, the number of variables, constraints and real-time parameters explained above
needs to be provided as well as the length of the multistage problem. For this example, we
chose to use 𝑁 = 10 stages in the NLP:

Matlab

horizonLength = 10;
nInputs = numel(I.inputs);
nStates = numel(I.states);

model.N = horizonLength; % Horizon length
model.nvar = nInputs+nStates; % Number of variables
model.neq = nStates; % Number of equality constraints
model.npar = 2; % Number of runtime parameters (waypoint␣
→˓coordinates)

11.11.2 Generating a solver

The actual solver generation happens inside the function generatePathTrackingSolver:

Matlab

%% Define solver options
codeoptions = getOptions('PathTrackingSolver');
codeoptions.maxit = 200; % Maximum number of iterations
codeoptions.optlevel = 3; % 0: No optimization, good for prototyping
codeoptions.timing = 1;
codeoptions.printlevel = 0;
codeoptions.nohash = 1; % Enforce solver regeneration
codeoptions.overwrite = 1; % Overwrite existing solver

(continues on next page)

Chapter 11. Examples 201

FORCESPRO User Manual

(continued from previous page)

codeoptions.BuildSimulinkBlock = 0;

% SQP options
codeoptions.solvemethod = 'SQP_NLP';
codeoptions.nlp.hessian_approximation = 'gauss-newton';
codeoptions.sqp_nlp.maxqps = 1; % Maximum number of quadratic problems to be␣
→˓solved in one solver call
codeoptions.sqp_nlp.use_line_search = 0;

%% Generate FORCESPRO solver
cd(solverDir);
FORCES_NLP(model, codeoptions);

First, appropriate codeoptions are set. In particular, we chose to use an SQP algorithm
with Gauss-Newton approximation for the Hessian matrix and perform only a single QP
solve per solver call. Finally, we use the function FORCES_NLP to generate a solver called
PathTrackingSolver.

11.11.3 Calling the generated solver

The goal of this example is to optimize the predicted car trajectory for the next N time steps
and then apply the calculated input for the current time step. The procedure is repeated for
the entire simulation period.

Choosing the Path

The path to follow can either be an ellipse or a racetrack profile.

Matlab

mapName = 'racetrack'; % Current options: 'ellipse' and 'racetrack'

The initial conditions for the dynamic states are chose as the first waypoint of the path and
the real-time parameters are initialized with the waypoint coordinates:

Matlab

% Set initial condition
problem.xinit = simulatedZ(I.states,k);

% Set runtime parameters (here, the next N points on the map)
nextPathPoints = resamplePathForTracker(simulatedZ(:,k), I, map, timeStep,␣
→˓horizonLength);
problem.all_parameters = reshape(nextPathPoints,2*model.N,1);

Note: The racetrack map used for this example originates from the repository https://
github.com/alexliniger/MPCC. See PathTracking.m and PathTrackingSqpFast.m inside the ex-
ample folder/archive for more details.

The simulation itself is performed using the following loop, which makes use of several auxil-
iary functions:

Matlab

202 Chapter 11. Examples

FORCESPRO User Manual

tuningProblems = cell(simLength,1); % only used in PathTrackingSqpFast.m

for k = 1:simLength

% Set initial condition
problem.xinit = simulatedZ(I.states,k);

% Set runtime parameters (here, the next N points on the map)
nextPathPoints = resamplePathForTracker(simulatedZ(:,k), I, map, timeStep,␣

→˓horizonLength);
problem.all_parameters = reshape(nextPathPoints,2*model.N,1);

% Solve optimization problem
tuningProblems{k} = problem;
[output,exitflag,info] = PathTrackingSolver(problem);

% Make sure the solver has exited properly
if (exitflag == 1)

fprintf('FORCESPRO took %d iterations and ',info.it);
fprintf('%.3f milliseconds to solve the problem.\n\n',info.solvetime*1000);

elseif (exitflag == -8)
warning('FORCESPRO finished with exitflag=-8. The underlying QP might be␣

→˓infeasible.');
fprintf('FORCESPRO took %d iterations and ',info.it);
fprintf('%.3f milliseconds to solve the problem.\n\n',info.solvetime*1000);

else
error('Some problem in solver!');

end

% Apply optimized input u to system and save simulation data
simulatedZ(I.inputs,k) = output.x01(I.inputs);
simulatedZ(I.states,k+1) = model.eq(simulatedZ(:,k));

% Extract output for prediction plots
cwidth = floor(log10(model.N))+1;
for i = 1:model.N

predictedZ(:,i) = output.(sprintf(sprintf('x%%0%iu',cwidth), i));
end
% Plot
handles = plotPathTrackerData(k,simulatedZ,predictedZ,model,I,simLength,map,

→˓nextPathPoints,handles);

if k == 1
% From now on, the solver should be initialized with the solution of its last␣

→˓call
problem.reinitialize = 0;

end

% Pause to slow down plotting
pause(0.05);

end

Chapter 11. Examples 203

FORCESPRO User Manual

11.11.4 Results

The goal is to find a trajectory that steers the vehicle as close to the provided racetrack way-
points as possible. The trajectory should also be feasible with respect to the vehicle dynam-
ics and its safety and physical limitations. The 2D calculated vehicle’s trajectory at timestep
𝑘 = 100 is presented in blue in Figure 11.36. Here, you can see the current predictions for the
trajectory marked green. The progress of the other states and inputs over time as well as their
predictions is shown in Figure 11.37.

The trajectory and the progress of the system variables over the entire simulation period of
360 steps are presented in Figure 11.38 and Figure 11.39. One can see that all constraints are
respected.

To see how the predictions of the system variables develop over all timesteps you can run the
example file on your own machine.

11.11.5 Using the SQP Fast solver

The above sections illustrate how to specify a dynamical model and generate a FORCESPRO
solver to use in a reference-tracking MPC algorithm. Since FORCESPRO version 6.0.0, FORCE-
SPRO supports a SQP Fast solver (see Tuning the SQP Fast solver). This algorithmic choice
changes the workflow a little as it requires the user to tune the solver in order to obtain a
solver which is tailored to the specific application. This tuning procedure can be done using
the FORCESPRO “autotune” tool (see Autotuner).

A variant of this example, showing the complete workflow for the fast QP solver, is available
under the name “PathTrackingSqpFast” in the examples folder in your FORCESPRO client.

The key step in tuning a fast SQP solver is to collect problem data on which certain algorithmic
parameters are tuned. For this, one generates a solver (with codeoptions.sqp_nlp.qp_method =
"general") exactly as above and then performs the simulation in order to save the simulation
data (the tuningProblems in the code-snippet in Calling the generated solver). Once this data
has been stored a fast SQP solver can be generated and tuned as follows:

Matlab

% Generate fast SQP solver based on a fast QP solver
tuningoptions = ForcesAutotuneOptions(tuningProblems);
ForcesGenerateSqpFastSolver(model, codeoptions, tuningoptions);

Note that the FORCESPRO autotuning tool allows for a great deal of customization. Such
customization is specified via the ForcesAutotuneOptions object (see Autotuner Options).

204 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.36: The calculated trajectory of the car (blue) and its predictions (green) at timestep
𝑘 = 100 (racetrack map from repository https://github.com/alexliniger/MPCC)

Chapter 11. Examples 205

https://github.com/alexliniger/MPCC

FORCESPRO User Manual

Figure 11.37: Development of the vehicle’s states and the system’s inputs over time at timestep
𝑘 = 100

206 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.38: The calculated trajectory of the car (racetrack map from repository https://github.
com/alexliniger/MPCC)

Chapter 11. Examples 207

https://github.com/alexliniger/MPCC
https://github.com/alexliniger/MPCC

FORCESPRO User Manual

Figure 11.39: Development of the vehicle’s states and the system’s inputs over time

208 Chapter 11. Examples

FORCESPRO User Manual

11.12 High-level interface: Legacy path tracking example
(MATLAB & Python)

• Defining the MPC Problem

– Objective

– Matrix equality constraints

– Bounds

– Dimensions

– Initial conditions

• Generating a solver

• Calling the generated solver

• Results

In this example we illustrate the simplicity of the SQP_NLP API on a path-tracking problem.
In every simulation step, the predicted trajectory of the car is optimized to follow a set of path
points. The example also visualizes how the predicted trajectory changes while the car moves
forward.

Note that an improved version of this example is available for MATLAB, see High-level inter-
face: Path tracking example (MATLAB).

We use a kinematic bicycle model described by a set of ordinary differential equations (ODEs):

�̇� = 𝑣 cos(𝜃 + 𝛽)

�̇� = 𝑣 sin(𝜃 + 𝛽)

�̇� =
𝐹

𝑚

𝜃 =
𝑣

𝑙𝑟
sin(𝛽)

�̇� = 𝜑

with:

𝛽 = arctan

(︂
𝑙𝑟

𝑙𝑟 + 𝑙𝑓
tan(𝛿)

)︂
The model consists of five differential states: 𝑥 and 𝑦 are the Cartesian coordinates of the
car, and 𝑣 is the linear velocity. The angles 𝜃 and 𝛿 denote the heading angle of the car and
its steering angle. Next, there are two control inputs to the model: the acceleration force 𝐹
and the steering rate 𝜑. The angle 𝛽 describes the direction of movement of the car’s center
of gravity relative to the heading angle 𝜃. The remaining three constant parameters of the
system are the car mass 𝑚 = 1 kg, and the lengths 𝑙𝑟 = 0.5 m and 𝑙𝑓 = 0.5 m specifying the
distance from the car’s center of gravity to the rear wheels and the front wheels, respectively.

The trajectory of the vehicle will be defined as an NLP. First, we define stage variable 𝑧 by
stacking the input and differential state variables:

𝑧 = [𝐹, 𝜑, 𝑥, 𝑦, 𝑣, 𝜃, 𝛿]⊤

You can find the code of this example to try it out for yourself in the examples folder that comes
with your client.

11.12.1 Defining the MPC Problem

Chapter 11. Examples 209

FORCESPRO User Manual

Objective

In this example the cost function is the same for all stages except for the last stage N. The
objective of this example is to follow a set of path points. At runtime, a target position 𝑝𝑖 for
each stage 𝑖 is provided. Each point consists of a x- and a y-coordinate:

𝑝𝑖 = [𝑝𝑖,𝑥, 𝑝𝑖,𝑦]⊤

The goal is to minimize the distance of the car to these target points. The distance is penalized
with quadratic costs. Plus, some small quadratic costs are added to the inputs 𝐹 and 𝑠, i.e.:

𝑓(𝑧, 𝑝𝑖) = 200(𝑧3 − 𝑝𝑖,𝑥)2 + 200(𝑧4 − 𝑝𝑖,𝑦)2 + 0.2𝑧21 + 0.2𝑧22

Since all cost terms are quadratic and summed up, we can formulate the objective as a least
squares problem:

𝑓(𝑧, 𝑝𝑖) =
1

2
||𝑟(𝑧, 𝑝𝑖)||22

𝑟(𝑧, 𝑝𝑖) = [
√

200(𝑧3 − 𝑝𝑖,𝑥),
√

200(𝑧4 − 𝑝𝑖,𝑦),
√

0.2𝑧1,
√

0.2𝑧2]⊤

The stage cost function is coded in MATLAB and Python as the following function:

Matlab

Python

model.LSobjective = @LSobj;

function [r] = LSobj(z,currentTarget)
% z = [F,phi,xPos,yPos,v,theta,delta]
% currentTarget = point on path that is to be headed for

r = [sqrt(200.0)*(z(3)-currentTarget(1)); % costs for deviating from the path in␣
→˓x-direction

sqrt(200.0)*(z(4)-currentTarget(2)); % costs for deviating from the path in␣
→˓y-direction

sqrt(0.2)*z(1); % penalty on input F
sqrt(0.2)*z(2)]; % penalty on input phi

end

model = forcespro.nlp.SymbolicModel() # create empty model
model.objective = obj

def obj(z,current_target):
"""z = [F,phi,xPos,yPos,v,theta,delta]
current_target = point on path that is to be headed for
"""
return (100.0*(z[2]-current_target[0])**2 # costs on deviating on the path in␣

→˓x-direction
+ 100.0*(z[3]-current_target[1])**2 # costs on deviating on the path in␣

→˓y-direction
+ 0.1*z[0]**2 # penalty on input F
+ 0.1*z[1]**2) # penalty on input phi

Note that using the model.LSobjective option instead of model.objective allows you to try out
the gauss-newton method for the hessian approximation.

For the last stage, the terminal costs are slightly increased by adapting the weighting factors:

𝑓(𝑧, 𝑝𝑖) = 400(𝑧3 − 𝑝𝑖,𝑥)2 + 400(𝑧4 − 𝑝2𝑖,𝑦) + 0.4𝑧21 + 0.4𝑧22

210 Chapter 11. Examples

FORCESPRO User Manual

The code looks a follows:

Matlab

Python

model.LSobjectiveN = @LSobjN;

function [r] = LSobjN(z,currentTarget)
% z = [F,phi,xPos,yPos,v,theta,delta]
% currentTarget = point on path that is to be headed for

r = [sqrt(400.0)*(z(3)-currentTarget(1)); % costs for deviating from the path in␣
→˓x-direction

sqrt(400.0)*(z(4)-currentTarget(2)); % costs for deviating from the path in␣
→˓y-direction

sqrt(0.4)*z(1); % penalty on input F
sqrt(0.4)*z(2)]; % penalty on input phi

end

model.objectiveN = objN

def objN(z,current_target):
"""z = [F,phi,xPos,yPos,v,theta,delta]
current_target = point on path that is to be headed for
"""
return (200.0*(z[2]-current_target[0])**2 # costs on deviating on the path in␣

→˓x-direction
+ 200.0*(z[3]-current_target[1])**2 # costs on deviating on the path in␣

→˓y-direction
+ 0.2*z[0]**2 # penalty on input F
+ 0.2*z[1]**2) # penalty on input phi

Matrix equality constraints

The matrix equality constraints model.eq in this example result from the vehicle’s dynamics
given above. First, the continuous dynamic equations are implemented as follows:

Matlab

Python

function [xDot] = continuousDynamics(x,u)
% state x = [xPos,yPos,v,theta,delta], input u = [F, phi]

% set physical constants
l_r = 0.5; % distance rear wheels to center of gravity of the car
l_f = 0.5; % distance front wheels to center of gravity of the car
m = 1.0; % mass of the car

% set parameters
beta = atan(l_r/(l_f + l_r) * tan(x(5)));

% calculate dx/dt
xDot = [x(3) * cos(x(4) + beta); % dxPos/dt = v*cos(theta+beta)

x(3) * sin(x(4) + beta); % dyPos/dt = v*cos(theta+beta)
u(1)/m; % dv/dt = F/m
x(3)/l_r * sin(beta); % dtheta/dt = v/l_r*sin(beta)

(continues on next page)

Chapter 11. Examples 211

FORCESPRO User Manual

(continued from previous page)

u(2)]; % ddelta/dt = phi
end

def continuous_dynamics(x, u):
""" state x = [xPos,yPos,v,theta,delta], input u = [F,phi]"""

set physical constants
l_r = 0.5 # distance rear wheels to center of gravitiy of the car
l_f = 0.5 # distance front wheels to center of gravitiy of the car
m = 1.0 # mass of the car

set parameters
beta = casadi.arctan(l_r/(l_f + l_r) * casadi.tan(x[4]))

calculate dx/dt
return np.array([x[2] * casadi.cos(x[3] + beta), # dxPos/dt = v*cos(theta+beta)

x[2] * casadi.sin(x[3] + beta), # dyPos/dt = v*sin(theta+beta)
u[0] / m, # dv/dt = F/m
x[2]/l_r * casadi.sin(beta), # dtheta/dt = v/l_r*sin(beta)
u[1]]) # ddelta/dt = phi

Now, these continuous dynamics are discretized using an explicit Runge-Kutta integrator of
order 4 as shown below. Note that the function RK4 is included in the FORCESPRO client
software.

Matlab

Python

integrator_stepsize = 0.1;
% z(3:7) = states x, z(1:2) = inputs u
model.eq = @(z) RK4(z(3:7), z(1:2), @continuousDynamics, integrator_stepsize);

integrator_stepsize = 0.1
z[2:7] = states x, z[0:2] = inputs u
model.eq = lambda z: forcespro.nlp.integrate(continuous_dynamics, z[2:7], z[0:2],

integrator=forcespro.nlp.integrators.RK4,
stepsize=integrator_stepsize)

As a last step, the indices of the left hand side of the dynamical constraint are defined. For
efficiency reasons, make sure the matrix has structure [0 I].

Matlab

Python

model.E = [zeros(5,2), eye(5)];

model.E = np.concatenate([np.zeros((5,2)), np.eye(5)], axis=1)

212 Chapter 11. Examples

FORCESPRO User Manual

Bounds

All variables except the heading angle 𝜃 are bounded:

−5 N ≤𝐹 ≤ 5 N

−90 deg/s ≤𝜑 ≤ 90 deg/s

−2 m ≤𝑥 ≤ 2 m

−2 m ≤𝑦 ≤ 2 m

0 m/s ≤𝑣 ≤ 4 m/s

− inf ≤𝜃 ≤ inf

−0.48𝜋 rad ≤𝛿 ≤ 0.48𝜋 rad

The implementation of the simple bounds is given here:

Matlab

Python

% upper/lower variable bounds lb <= z <= ub
% inputs | states
% F phi x y v theta delta
model.lb = [-5., deg2rad(-90), -2., -2., 0., -inf, -0.48*pi];
model.ub = [+5., deg2rad(90), 2., 2., 4., +inf, 0.48*pi];

upper/lower variable bounds lb <= z <= ub
inputs | states
F phi x y v theta delta
model.lb = np.array([-5., np.deg2rad(-90.), -2., -2., 0., -np.inf, -0.48*np.pi])
model.ub = np.array([+5., np.deg2rad(+90.), 2., 2., 4., np.inf, 0.48*np.pi])

Dimensions

Furthermore, the number of variables, constraints and real-time parameters explained above
needs to be provided as well as the length of the multistage problem. For this example, we
chose to use 𝑁 = 10 stages in the NLP:

Matlab

Python

model.N = 10; % horizon length
model.nvar = 7; % number of variables
model.neq = 5; % number of equality constraints
model.npar = 2; % number of runtime parameters

model.N = 10 # horizon length
model.nvar = 7 # number of variables
model.neq = 5 # number of equality constraints
model.npar = 2 # number of runtime parameters

Initial conditions

The goal of the maneuver is to steer the vehicle from a set of initial conditions:

𝑥init = 0.8 m, 𝑦init = 0 m, 𝑣init = 0 m/s, 𝜃init = 0.5𝜋 rad, , 𝛿init = 0 rad

Chapter 11. Examples 213

FORCESPRO User Manual

For the code generation, only the indices of the variables to which initial values will be applied
are required. This is coded as follows:

Matlab

Python

model.xinitidx = 3:7;

model.xinitidx = range(2,7)

11.12.2 Generating a solver

We have now populated model with the necessary fields to generate a solver for our problem.
We choose the SQP solve method and set some further options for our solver. Then, we use
the function FORCES_NLP to generate a solver for the problem defined by model:

Matlab

Python

%% Set solver options
codeoptions = getOptions('FORCESNLPsolver');
codeoptions.maxit = 200; % Maximum number of iterations
codeoptions.printlevel = 2; % Use printlevel = 2 to print␣
→˓progress (but(not for timings)
codeoptions.optlevel = 0; % 0: no optimization, 1: optimize for␣
→˓size, 2: optimize for speed, 3: optimize for size & speed
codeoptions.cleanup = false;
codeoptions.timing = 1;
codeoptions.printlevel = 0;
codeoptions.nlp.hessian_approximation = 'bfgs'; % set initialization of the hessian␣
→˓approximation
codeoptions.solvemethod = 'SQP_NLP'; % choose the solver method Sequential␣
→˓Quadratic Programming
codeoptions.sqp_nlp.maxqps = 5; % maximum number of quadratic␣
→˓problems to be solved during one solver call
codeoptions.sqp_nlp.reg_hessian = 5e-9; % increase this parameter if␣
→˓exitflag=-8

Set solver options
codeoptions = forcespro.CodeOptions('FORCESNLPsolver')
codeoptions.maxit = 200 # Maximum number of iterations
codeoptions.printlevel = 0
codeoptions.optlevel = 0 # 0 no optimization, 1 optimize for␣
→˓size, 2 optimize for speed, 3 optimize for size & speed
codeoptions.cleanup = False
codeoptions.timing = 1
codeoptions.nlp.hessian_approximation = 'bfgs' # when using solvemethod = 'SQP_NLP'␣
→˓and LSobjective, try out 'gauss-newton' here
codeoptions.solvemethod = 'SQP_NLP' # choose the solver method Sequential␣
→˓Quadratic Programming
codeoptions.nlp.bfgs_init = 2.5*np.identity(7) # set initialization of the hessian␣
→˓approximation
codeoptions.sqp_nlp.maxqps = 1 # maximum number of quadratic␣
→˓problems to be solved
codeoptions.sqp_nlp.reg_hessian = 5e-9 # increase this if exitflag=-8

(continues on next page)

214 Chapter 11. Examples

FORCESPRO User Manual

(continued from previous page)

Creates code for symbolic model formulation given above, then contacts
server to generate new solver
solver = model.generate_solver(options=codeoptions)

11.12.3 Calling the generated solver

The goal of this example is to optimize the predicted car trajectory for the next N time steps
and then apply the calculated input for the current time step. The procedure is repeated for
the entire simulation period.

This means, after setting up the initial problem instance, the solver is called in a loop for every
simulation time step. The MEX interface of the solver is used to invoke it.

Matlab

Python

%% Simulation
simLength = 80; % simulate 8sec

% Variables for storing simulation data
x = zeros(5,simLength+1); % states
u = zeros(2,simLength); % inputs

% Set initial guess to start solver from
x0i = zeros(model.nvar,1);
problem.x0 = repmat(x0i,model.N,1);

% Set initial condition
xinit = [0.8, 0., 0., deg2rad(90), 0.]';
x(:,1) = xinit;

for k = 1:simLength

% Set initial condition
problem.xinit = x(:,k);

% Set runtime parameters (here, the next N points on the path)
nextPathPoints = extractNextPathPoints(pathPoints, x(1:2,k), model.N);
problem.all_parameters = reshape(nextPathPoints,2*model.N,1);

% Solve optimization problem
[output,exitflag,info] = FORCESNLPsolver(problem);

% Make sure the solver has exited properly
if(exitflag == 1)

fprintf('\nFORCES took %d iterations and ',info.it);
fprintf('%f seconds to solve the problem.\n',info.solvetime);

else
error('Some problem in solver');

end

% Apply optimized input u to system and save simulation data
u(:,k) = output.x01(1:2);
x(:,k+1) = model.eq([u(:,k);x(:,k)])';

(continues on next page)

Chapter 11. Examples 215

FORCESPRO User Manual

(continued from previous page)

end

Simulation

sim_length = 80 # simulate 8sec

Variables for storing simulation data
x = np.zeros((5,sim_length+1)) # states
u = np.zeros((2,sim_length)) # inputs

Set initial guess to start solver from
x0i = np.zeros((model.nvar,1))
x0 = np.transpose(np.tile(x0i, (1, model.N)))

Set initial condition
xinit = np.transpose(np.array([0.8, 0., 0., np.deg2rad(90), 0.]))
x[:,0] = xinit

problem = {"x0": x0,
"xinit": xinit}

for k in range(sim_length):

Set initial condition
problem["xinit"] = x[:,k]

Set runtime parameters (here, the next N points on the path)
next_path_points = extract_next_path_points(path_points, x[0:2,k], model.N)
problem["all_parameters"] = np.reshape(np.transpose(next_path_points), \

(2*model.N,1))

Time to solve the NLP!
output, exitflag, info = solver.solve(problem)

Make sure the solver has exited properly.
assert exitflag == 1, "bad exitflag"
sys.stderr.write("FORCES took {} iterations and {} seconds to solve the problem.\n

→˓"\
.format(info.it, info.solvetime))

Extract output
temp = np.zeros((np.max(model.nvar), model.N))
for i in range(0, model.N):

temp[:, i] = output['x{0:02d}'.format(i+1)]
pred_u = temp[0:2, :] # predicted inputs
pred_x = temp[2:7, :] # oredicted states

Apply optimized input u of first stage to system and save simulation data
u[:,k] = pred_u[:,0]
x[:,k+1] = np.transpose(model.eq(np.concatenate((u[:,k],x[:,k]))))

216 Chapter 11. Examples

FORCESPRO User Manual

11.12.4 Results

The goal is to find a trajectory that steers the vehicle as close to the provided path points as
possible. The trajectory should also be feasible with respect to the vehicle dynamics and its
safety and physical limitations. The 2D calculated vehicle’s trajectory at timestep 𝑘 = 40 is
presented in blue in Figure 11.40. Here, you can see the current predictions for the trajectory
marked green. The progress of the other states and inputs over time as well as their predic-
tions is shown in Figure 11.41.

The trajectory and the progress of the system variables over the entire simulation period are
presented in Figure 11.42 and Figure 11.43. One can see that all constraints are respected.

To see how the predictions of the system variables develop over all timesteps you can run the
example file on your own machine.

You can find the code of this example in the examples folder that comes with your client.

Chapter 11. Examples 217

FORCESPRO User Manual

Figure 11.40: The calculated trajectory of the car (blue) and its predictions (green) at timestep
𝑘 = 40

218 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.41: Development of the vehicle’s states and the system’s inputs over time (timestep
𝑘 = 40)

Chapter 11. Examples 219

FORCESPRO User Manual

Figure 11.42: The calculated trajectory of the car

220 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.43: Development of the vehicle’s states and the system’s inputs over time

Chapter 11. Examples 221

FORCESPRO User Manual

11.13 High-level interface: Rate Constraints

• Implementation in MATLAB

• Results

As in Section High-level interface: Basic example we consider the following linear MPC prob-
lem with lower and upper bounds on state and inputs, and a terminal cost term:

minimize 𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

(︀
𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖

)︀
subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ �̄�

𝑢 ≤ 𝑢𝑖 ≤ �̄�

This problem is parametric in the initial state 𝑥 and the first input 𝑢0 is typically applied to the
system after a solution has been obtained. For the sake of this example, we assume 𝑢𝑖 ∈ R
and 𝑥𝑖 ∈ R2 and write

𝐴 =

(︂
𝐴11 𝐴12

𝐴21 𝐴22

)︂
, 𝐵 =

(︂
𝐵1

𝐵2

)︂
.

In addition, we impose constraints on the input rate change ∆𝑢𝑖 = 𝑢𝑖+1 − 𝑢𝑖:

∆𝑢 ≤ ∆𝑢𝑖 ≤ ∆𝑢.

The constraints can be included by defining states

𝑧𝑖 =

⎛⎝∆𝑢𝑖
𝑢𝑖
𝑥𝑖

⎞⎠ ∈ R4.

The MPC problem now reads

minimize 𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

(︀
𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖

)︀
,

subject to 𝑥0 = 𝑥,

𝐸𝑧𝑖+1 = 𝐴𝑧𝑖,

𝑧 ≤ 𝑧𝑖 ≤ 𝑧.

with

𝐸 =

⎛⎝0 1 0 0
0 0 1 0
0 0 0 1

⎞⎠ , 𝐴 =

⎛⎝1 1 0 0
0 𝐵1 𝐴11 𝐴12

0 𝐵2 𝐴21 𝐴22

⎞⎠ ,

𝑧 = (∆𝑢, 𝑢, 𝑥)⊤, 𝑧 = (∆𝑢, 𝑢, 𝑥)⊤.

11.13.1 Implementation in MATLAB

The Matlab code is based on the Matlab code in High-level interface: Basic example. We
define a variable absrate which limits the absolute value of ∆𝑢.

Matlab

Python

222 Chapter 11. Examples

FORCESPRO User Manual

%% system
A = [1.1 1; 0 1];
B = [1; 0.5];
[nx,nu] = size(B);

%% MPC setup
N = 10;
Q = eye(nx);
R = eye(nu);
if(exist('dlqr','file'))
[~,P] = dlqr(A,B,Q,R);
else
P = 10*Q;
end

absrate = 0.5;
umin = -0.5; umax = 0.5;
dumin = -absrate; dumax = absrate;
xmin = [-5, -5]; xmax = [5, 5];

%% FORCESPRO multistage form
% assume variable ordering zi = [u{i+1}-u{i}; u{i}; x{i}] for i=0...N

% dimensions
model.N = 11; % horizon length N+1
model.nvar = nu+nu+nx; % number of variables
model.neq = nu+nx; % number of equality constraints

% objective
model.objective = @(z) z(2)*R*z(2) + [z(3);z(4)]'*Q*[z(3);z(4)];
model.objectiveN = @(z) [z(3);z(4)]'*P*[z(3);z(4)];

% equalities
model.eq = @(z) [z(1) + z(2);

A(1,:)*[z(3);z(4)] + B(1)*z(2);
A(2,:)*[z(3);z(4)] + B(2)*z(2)];

model.E = [zeros(3,1), eye(3)];

% initial state
model.xinitidx = 3:4;

% inequalities
model.lb = [dumin, umin, xmin];
model.ub = [dumax, umax, xmax];

system
A = np.array([[1.1, 1], [0, 1]])
B = np.array([[1], [0.5]])
nx, nu = np.shape(B)

MPC setup
N = 10
Q = np.eye(nx)
R = np.eye(nu)
P = 10*Q

(continues on next page)

Chapter 11. Examples 223

FORCESPRO User Manual

(continued from previous page)

umin = -0.5
umax = 0.5
absrate = 0.05
dumin = -absrate
dumax = absrate
xmin = np.array([-5, -5])
xmax = np.array([5, 5])

FORCESPRO multistage form
assume variable ordering zi = [u{i+1}-ui; ui; xi] for i=0...N

dimensions
model = forcespro.nlp.ConvexSymbolicModel(11) # horizon length N+1
model.nvar = 4 # number of variables
model.neq = 3 # number of equality constraints

objective
model.objective = (lambda z: z[1]*R*z[1] +

casadi.horzcat(z[2], z[3]) @ Q @ casadi.vertcat(z[2], z[3]))
model.objectiveN = (lambda z:

casadi.horzcat(z[2], z[3]) @ P @ casadi.vertcat(z[2], z[3]))

equalities
model.eq = lambda z: casadi.vertcat(z[0] + z[1],

casadi.dot(A[0, :], casadi.vertcat(z[2], z[3])) + B[0,␣
→˓:]*z[1],

casadi.dot(A[1, :], casadi.vertcat(z[2], z[3])) + B[1,␣
→˓:]*z[1])

model.E = np.concatenate([np.zeros((3, 1)), np.eye(3)], axis=1)

initial state
model.xinitidx = [2, 3]

inequalities
model.lb = np.concatenate([[dumin, umin], xmin])
model.ub = np.concatenate([[dumax, umax], xmax])

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

11.13.2 Results

We run the simulation for different values of absrate. The results of the simulation are pre-
sented below. The plot on the top shows the system’s states over time, the plot in the middle
shows the input commands, the plot on the bottom shows the input rate change. We can
see that all constraints are respected. We observe that compared to High-level interface: Ba-
sic example the behaviour does not change for absrate >= 0.1 (see Figure 11.44). If absrate =
0.05, it takes more time to steer the state to its setpoint (see Figure 11.45).

224 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.44: Simulation results of the states (top, in blue and red), input (middle, in blue), and
input rate change (bottom, in blue) over time. The constraints are plotted in red dashed lines.
The rate constraint is set to 0.5 and is not active at any moment.

Chapter 11. Examples 225

FORCESPRO User Manual

Figure 11.45: Simulation results of the states (top, in blue and red), input (middle, in blue), and
input rate change (bottom, in blue) over time. The constraints are plotted in red dashed lines.
The rate constraint is set to 0.05 and is active at some points.

226 Chapter 11. Examples

FORCESPRO User Manual

11.14 High-level interface: Soft Constraints

• Implementation in MATLAB

• Results

As in Section High-level interface: Basic example we consider the following linear MPC prob-
lem with lower and upper bounds on state and inputs, and a terminal cost term:

minimize 𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

(︀
𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖

)︀
subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ �̄�

𝑢 ≤ 𝑢𝑖 ≤ �̄�

This problem is parametric in the initial state 𝑥 and the first input 𝑢0 is typically applied to the
system after a solution has been obtained. For the sake of this example, we assume 𝑢𝑖 ∈ R
and 𝑥𝑖 ∈ R2 and write

𝐴 =

(︂
𝐴11 𝐴12

𝐴21 𝐴22

)︂
, 𝐵 =

(︂
𝐵1

𝐵2

)︂
.

Suppose we want to allow the inequality constraints for 𝑢𝑖 to be slightly violated. In this case,
we introduce a slack variable 𝑠𝑖 ≥ 0 and write

𝑢− 𝑠𝑖 ≤ 𝑢𝑖 ≤ 𝑢+ 𝑠𝑖.

We want to punish positive values of 𝑠𝑖 by adding a penalty term to the objective function.
We use a hyperparameter 𝜆 ≥ 0 and write

𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

(︀
𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖 + 𝜆𝑠𝑖

)︀
.

Here, we use a penalty term linear in 𝑠𝑖. For 𝜆 large enough, the slack variables 𝑠𝑖 are only
chosen positive if the problem is infeasible with a hard constraint. For small 𝜆, it may be op-
timal to slightly violate the constraints even though the original problem is feasible. It is also
common to choose a penalty term quadratic in 𝑠𝑖. In order to use the FORCESPRO framework,
we need to recast the new inequality constraints:

minimize 𝑥⊤𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

(︀
𝑥⊤𝑖 𝑄𝑥𝑖 + 𝑢⊤𝑖 𝑅𝑢𝑖 + 𝜆𝑠𝑖

)︀
,

subject to 𝑥0 = 𝑥,

𝑥𝑖+1 = 𝐴𝑥𝑖 +𝐵𝑢𝑖,

𝑥 ≤ 𝑥𝑖 ≤ �̄�,

ℎ1(𝑢𝑖, 𝑠𝑖) ≤ �̄�,

𝑢 ≤ ℎ2(𝑢𝑖, 𝑠𝑖),

with ℎ1(𝑢𝑖, 𝑠𝑖) = 𝑢𝑖 − 𝑠𝑖 and ℎ2(𝑢𝑖, 𝑠𝑖) = 𝑢𝑖 + 𝑠𝑖.

11.14.1 Implementation in MATLAB

The Matlab code is based on the Matlab code in High-level interface: Basic example. The
modified inequality constraints can be implemented as follows:

Matlab

Python

Chapter 11. Examples 227

FORCESPRO User Manual

%% relaxed inequality constraints
% assume variable ordering zi = [si, ui, xi]

model.nh = 2; % number of inequality constraints
model.ineq = @(z) [z(2) - z(1); % h_1

z(2) + z(1)]; % h_2
model.hu = [umax, +inf]; % upper bound on inequality constraints
model.hl = [-inf, umin]; % lower bound on inequality constraints

relaxed inequalities constraints
assume variable ordering zi = [si, ui, xi]

model.ineq = lambda z: casadi.vertcat(z[1] - z[0],
z[1] + z[0])

model.hu = np.array([umax, +float('inf')])
model.hl = np.array([-float('inf'), umin])

The resulting code is depicted below.

Matlab

Python

%% system
A = [1.1 1; 0 1];
B = [1; 0.5];
[nx,nu] = size(B);
lambda = 8; % measure for penalty term

%% MPC setup
N = 10;
Q = eye(nx);
R = eye(nu);
if(exist('dlqr','file'))

[~,P] = dlqr(A,B,Q,R);
else

P = 10*Q;
end
umin = -0.5; umax = 0.5;
xmin = [-5, -5]; xmax = [5, 5];

%% FORCESPRO multistage form
% assume variable ordering zi = [si; ui; xi] for i=0...N

% dimensions
model.N = 11; % horizon length N+1
model.nvar = 4; % number of variables
model.neq = 2; % number of equality constraints
model.nh = 2; % number of inequality constraints

% objective with penalty term
model.objective = @(z) z(2)*R*z(2) + [z(3);z(4)]'*Q*[z(3);z(4)] + lambda*z(1);
model.objectiveN = @(z) [z(3);z(4)]'*P*[z(3);z(4)];

% equalities
model.eq = @(z) [A(1,:)*[z(3);z(4)] + B(1)*z(2);

A(2,:)*[z(3);z(4)] + B(2)*z(2)];

(continues on next page)

228 Chapter 11. Examples

FORCESPRO User Manual

(continued from previous page)

model.E = [zeros(2,2), eye(2)];

% initial state
model.xinitidx = 3:4;

% relaxed inequalities
model.ineq = @(z) [z(2) - z(1);

z(2) + z(1)];
model.hu = [umax, +inf];
model.hl = [-inf, umin];

model.lb = [0, -inf, xmin];
model.ub = [+inf, +inf, xmax];

system
A = np.array([[1.1, 1], [0, 1]])
B = np.array([[1], [0.5]])
nx, nu = np.shape(B)
lam = 8 # measure for penalty term

MPC setup
N = 10
Q = np.eye(nx)
R = np.eye(nu)
P = 10*Q
umin = -0.5
umax = 0.5
xmin = np.array([-5, -5])
xmax = np.array([5, 5])

FORCESPRO multistage form
assume variable ordering zi = [si; ui; xi] for i=0...N

dimensions
model = forcespro.nlp.ConvexSymbolicModel(11) # horizon length N+1
model.nvar = 4 # number of variables
model.neq = 2 # number of equality constraints
model.nh = 2

objective with penalty term
model.objective = (lambda z: z[1]*R*z[1] + lam*z[0] +

casadi.horzcat(z[2], z[3]) @ Q @ casadi.vertcat(z[2], z[3]))
model.objectiveN = (lambda z:

casadi.horzcat(z[2], z[3]) @ P @ casadi.vertcat(z[2], z[3]))

equalities
model.eq = lambda z: casadi.vertcat(casadi.dot(A[0, :], casadi.vertcat(z[2], z[3])) +␣
→˓B[0, :]*z[1],

casadi.dot(A[1, :], casadi.vertcat(z[2], z[3])) + B[1,␣
→˓:]*z[1])

model.E = np.concatenate([np.zeros((2, 2)), np.eye(2)], axis=1)

initial state
model.xinitidx = [2, 3]

(continues on next page)

Chapter 11. Examples 229

FORCESPRO User Manual

(continued from previous page)

relaxed inequalities
model.ineq = lambda z: casadi.vertcat(z[1] - z[0],

z[1] + z[0])
model.hu = np.array([umax, +float('inf')])
model.hl = np.array([-float('inf'), umin])

inequalities
model.lb = np.concatenate([[0, -float('inf')], xmin])
model.ub = np.concatenate([[float('inf'), float('inf')], xmax])

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

11.14.2 Results

We run the simulation for 𝜆 = 2, 8. The results of the simulation are presented in Figure 11.46
below. The plot on the top shows the system’s states over time, the plot on the bottom shows
the input commands. For 𝜆 = 2, the constraints on 𝑢 are clearly violated, for 𝜆 = 8, these
constraints are only slightly violated.

Figure 11.46: Simulation results of the states (top), input (middle) over time. The constraints
are plotted in black dashed lines.

230 Chapter 11. Examples

FORCESPRO User Manual

11.15 Controlling a crane using a FORCESPRO NLP solver

• Defining the MPC problem

– Model dimensions and dynamics

– System constraints

– Objective function

• Generating a FORCESPRO interior point NLP solver

• Calling the crane solver

• Results

In this example we will see how to control a crane using the FORCESPRO interior point NLP
solver. One interesting feature of this system is that is has a rather large linear subsystem
which FORCESPRO can exploit for performance (see Linear subsystem exploitation). The
crane is described by the following states:

𝑥𝐶 : cart position
𝑣𝐶 : cart velocity
𝑥𝐿 : cable length
𝑣𝐿 : rate of change of cable length
𝜃 : angle of pendulum
𝜔 : rate of change of angle

𝑢𝐶 : voltage for horizontal actuator
𝑢𝐿 : voltage for rotating actuator

and the control inputs are given by the voltage rate for the horizontal actuator 𝑢𝐶𝑅 and the
voltage rate of the rotating actuator 𝑢𝐿𝑅. The system dynamics are described by the following
ODE:

�̇�𝐶 = 𝑣𝐶

�̇�𝐶 = 𝑎𝐶

�̇�𝐿 = 𝑣𝐿

�̇�𝐿 = 𝑎𝐿

𝜃 = 𝜔

�̇� = −𝑎𝐶 cos(𝜃) + 𝑔 sin(𝜃) + 2𝑣𝐿𝜔

𝑥𝐿
�̇�𝐶 = 𝑢𝐶𝑅

�̇�𝐿 = 𝑢𝐿𝑅

where 𝑎𝐶 = −𝑣𝐶
𝜏 + 𝐴𝐶𝑢𝐶

𝜏 and 𝑎𝐿 = −𝑣𝐿
𝜏 + 𝐴𝐿𝑢𝐿

𝜏 and the constants are given by

𝑔 = 9.81 (gravitational constant)
𝐴𝐶 = 0.0474 (gain of GC(s) in m/s/V)
𝐴𝐿 = 0.0341 (gain of GL(s) m/s/V)
𝜏 = 0.0247 (time constant of winch dynamics in seconds)

For further details on these models we refer to [VukLoock] and [QuirDiehl].

You can find the Matlab code below for this example to try it out for yourself in the examples
folder that comes with your client.

Chapter 11. Examples 231

FORCESPRO User Manual

11.15.1 Defining the MPC problem

Model dimensions and dynamics

The following code-snippet shows how to define the MPC problem associated with control-
ling the crane in FORCESPRO. The primal variable of our optimization problem is

𝑧 =

(︂
𝑢
𝑥

)︂

%% Define crane model
% Dimensions
model.N = 20; % horizon length
model.nvar = 10; % number of variables
model.neq = 8; % number of equality constraints
model.nh = 0; % number of inequality constraint functions
model.npar = 2; % number of parameters (these will be the reference values to␣
→˓track)
nx = 8;
nu = 2;

% Dynamics
model.E = [zeros(nx,nu), eye(nx)];
model.continuous_dynamics = @(x,u,p) ode(x,u,p);

Here the right-hand-side of the differential equation ode is defined by the following Matlab
function

function dx = ode(x,u,p)

g = 9.81; % gravitational constant
AC = 0.0474; % gain of GC(s) in m/s/V
AL = 0.0341; % gain of GL(s) m/s/V
tau = 0.0247; % time constant of winch dynamics in seconds

uCR = u(1); % voltage rate for horizontal actuator
uLR = u(2); % voltage rate for rotating actuator

xC = x(1); % cart position
vC = x(2); % cart velocity
xL = x(3); % cable length
vL = x(4); % rate of change of cable length
theta = x(5); % angle of pendulum
omega = x(6); % rate of change of angle
uC = x(7); % voltage for horizontal actuator
uL = x(8); % voltage for rotating actuator

aT = -(1/tau)*vC + (AC/tau)*uC;
aL = -(1/tau)*vL + (AL/tau)*uL;

dx = [vC; ...
aT; ...
vL; ...
aL; ...
omega; ...
-(1/xL)*(aT*cos(theta) + g*sin(theta) + 2*vL*omega); ...

(continues on next page)

232 Chapter 11. Examples

FORCESPRO User Manual

(continued from previous page)

uCR; ...
uLR];

end

System constraints

We put simple constraints on both of the control inputs as well as the voltage for horizontal
actuator and the voltage for rotating actuator. We also specify that we have an initial condi-
tion for all the states.

% Bounds
model.lb = [-100, -100, -inf, -inf, -inf, -inf, -inf, -inf, -10, -10];
model.ub = [+100, +100, +inf, +inf, +inf, +inf, +inf, +inf, +10, +10];

% Initial state
xinitidx = 3:10;
model.xinitidx = xinitidx;

Objective function

The goal of the control will be to track reference values for the cart position and cable length
of the crane. Hence, it makes sense to use a Gauss-Newton hessian approaximation in our
optimization problem. Hence, in FORCESPRO we specify a least squares objective function

% Least squares objective function
model.LSobjective = @(z, p) LScost(z, p);

where the LScost function is defined as follows

function [r] = LScost(z,p)
ep = 1e-5;
cst = 50;
sep = sqrt(ep);
scst = sqrt(cst);
r = [sep*z(1); sep*z(2); scst*(z(3)-p(1)); sep*z(4); scst*(z(5)-p(2)); sep*z(6);␣
→˓sep*z(7); sep*z(8); sep*z(9); sep*z(10)];
end

11.15.2 Generating a FORCESPRO interior point NLP solver

In order to generate a solver we first need to choose options to specify the algorithmic spec-
ifications (see Solver Options) we want implemented in our solver. The two most important
options to mention here is that we specify to use a Gauss-Newton hessian approximation and
we want to allow FORCESPRO to exploit linear subsystems of our dynamics.

%% Set codeoptions to specify solver settings
codeoptions = getOptions('CraneSolver');
Ts = 1/100; % sampling time
codeoptions.nlp.integrator.Ts = Ts;
nodes = 4;
codeoptions.nlp.integrator.nodes = nodes;
codeoptions.nlp.integrator.type = 'ERK4';

(continues on next page)

Chapter 11. Examples 233

FORCESPRO User Manual

(continued from previous page)

codeoptions.nlp.integrator.attempt_subsystem_exploitation = 1; % Enable subsystem␣
→˓exploitation for performance
codeoptions.printlevel = 0;
codeoptions.nlp.hessian_approximation = 'gauss-newton';
codeoptions.server = 'https://forces.embotech.com/';

% Generate solver
FORCES_NLP(model, codeoptions);

The last command will generate a FORCESPRO solver which can now be called from Matlab
via the name CraneSolver.

11.15.3 Calling the crane solver

With our FORCESPRO controller at hand we can easily simulate our system in Matlab as the
following code-snippet shows.

%% Simulation
totalTime = 100; % number of seconds
nSamples = totalTime / Ts;

x = [0.15; 0; 0.7; 0; 0; 0; 0; 0];
for ii = 1:nSamples

% get current reference
ref = getRef(t, totalTime);

% set up problem data
problem.xinit = x;
problem.x0 = repmat([0;0;x],model.N,1);
problem.all_parameters = repmat(ref,model.N,1);

% call FORCESPRO solver and check exit status
[solution, exitflag, info] = CraneSolver(problem);
if exitflag ~= 1

error('Encountered solver failure.');
end

% extract control and update state
u = solution.x01(1:2);
x = RK4(x, u, @(x,u,p) ode(x,u,p), Ts, ref, nodes);

end

11.15.4 Results

As can be seen from figures Figure 11.47 and Figure 11.48 below the FORCESPRO con-
troller achieves tracking the reference values almost perfectly. A benchmark running the
CraneSolver with and without linear subsystem exploitation on a Raspberry Pi 3 showed an
overall reduction of computation time by 22% when exploiting linear subsystems.

234 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.47: The reference values for the cart position (𝑥𝐶) seen in red and the simulated cart
position seen in blue.

Figure 11.48: The reference values for the cable length (𝑥𝐿) seen in red and the simulated cable
length seen in blue.

Chapter 11. Examples 235

FORCESPRO User Manual

11.16 Real-time SQP Solver: Robotic Arm Manipulator (MAT-
LAB & Python)

• Defining the MPC problem

– Tracking objective

– State and input constraints

– Initial condition and horizon length

• Generating a real-time SQP solver

• Calling the generated SQP solver

• Calling the dynamics used in the model directly in MATLAB/Python

• Results

In this example we illustrate the use of the real-time Sequential Quadratic Programming
(SQP) solver and how to generate and call the dynamics used in the formulation of the opti-
mization problem directly in MATLAB/Python. In particular, we use a robotic arm manipulator
described by a set of ordinary differential equations (ODEs):

𝜃1 = 𝛾

𝜃2 =
1

𝛽2
(𝜏2 − 𝛽1𝛾 − 𝛽3𝜃

2
1 − 𝛽4)

𝜏1 = 𝑢1

𝜏2 = 𝑢2

where 𝜃1, 𝜃2 are joint angles modelling the manipulator configuration, 𝑢1, 𝑢2 are the rates (in-
puts) of the torques 𝜏1, 𝜏2 applied to the joints and

𝛾 =̂
1

𝛼1 − 𝛼2
𝛽1

𝛽2

(
𝛼2

𝛽2
(𝛽4 + 𝛽3𝜃

2
1 − 𝜏2) − 𝛼3𝜃1𝜃2 − 𝛼4𝜃2 − 𝛼5 + 𝜏1).

The coefficients 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5 and 𝛽1, 𝛽2, 𝛽3, 𝛽4 depend on the inertia and mass of the robot
arm components. Their expressions can be found in [SicSci09]. The optimal control problem
is formalized from the state 𝑥 defined by

𝑥 =̂ (𝜃1, 𝜃1, 𝜃2, 𝜃2, 𝜏1, 𝜏2)⊤

and the input 𝑢 defined as

𝑢 =̂ (𝜏1, 𝜏2)⊤.

The control objective is to make the first joint angle 𝜃1 follow a reference of 1.2 rad from 0 to
10 s and −1.2 rad from 10 to 20 s. Similarly, the second joint angle 𝜃2 should follow a reference
of −1.2 rad from 0 to 10 s and 1.2 rad from 10 to 20 s. The stage variable 𝑧 is defined by stacking
the input and differential state variables:

𝑧 = (𝜏1, 𝜏2, 𝜃1, 𝜃1, 𝜃2, 𝜃2, 𝜏1, 𝜏2)⊤

You can find the code of this example to try it out for yourself in the examples folder that comes
with your client.

11.16.1 Defining the MPC problem

236 Chapter 11. Examples

FORCESPRO User Manual

Tracking objective

Our goal is to minimize the distance of the joint angles to the reference, which can be trans-
lated in the following stage cost function:

𝑓(𝑧, 𝑝) = 1000(𝑧3 − 1.2𝑝)2 + 0.1𝑧24 + 1000(𝑧5 + 1.2𝑝)2 + 0.1𝑧26 + 0.01𝑧27 + 0.01𝑧28 + 0.01𝑧21 + 0.01𝑧22 ,

where 𝑝 is a run-time parameter taking value 1 from 0 to 10 s and −1 from 10 to 20 s.

The stage cost function is coded in MATLAB as the least-squares vector:

Matlab

Python

model.LSobjective = @(z,p)[sqrt(1000) * (z(3)-p(1)*1.2);...
sqrt(0.1) * z(4);...
sqrt(1000) * (z(5)+p(1)*1.2);...
sqrt(0.1) * z(6);...
sqrt(0.01) * z(7);...
sqrt(0.01) * z(8);...
sqrt(0.01) * z(1);...
sqrt(0.01) * z(2)];

model.objective = lambda z, p: (1000 * (z[2] - p[0]*1.2)**2
+ 0.1 * z[3]**2
+ 1000 * (z[4] + p[0]*1.2)**2
+ 0.10 * z[5]**2
+ 0.01 * z[6]**2
+ 0.01 * z[7]**2
+ 0.01 * z[0]**2
+ 0.01 * z[1]**2)

In the MATLAB example, this is needed to compute a Gauss-Newton approximation from the
Jacobian of the least-squares vector. In the Python example, where Gauss-Newton approxi-
mations are not yet available, we use the objective field to supply the target function.

State and input constraints

The following constraints are imposed on the torques and torque rates:

−100 Nm ≤𝜏1 ≤ 70 Nm

−100 Nm ≤𝜏2 ≤ 70 Nm

−200 Nm/s ≤𝜏1 ≤ 200 Nm/s

−200 Nm/s ≤𝜏2 ≤ 200 Nm/s

This corresponds to the code below.

Matlab

Python

% upper/lower variable bounds lb <= x <= ub
model.lb = [-200, -200, -pi, -100, -pi, -100, -100, -100];
model.ub = [200, 200, pi, 100, pi, 100, 70, 70];

Chapter 11. Examples 237

FORCESPRO User Manual

Upper/lower variable bounds lb <= x <= ub
Inputs | States
dtau1 dtau2 theta1 dtheta1 theta2 dtheta2 tau1 tau2
model.lb = np.array([-200, -200, -np.pi, -100, -np.pi, -100, -100, -100])
model.ub = np.array([200, 200, np.pi, 100, np.pi, 100, 70, 70])

Initial condition and horizon length

The prediction horizon is set to 21 and the following initial condition is set

Matlab

Python

model.xinit = [-0.4 0 0.4 0 0 0]';
model.xinitidx = 3:8;

xinit = np.array([-0.4, 0, 0.4, 0, 0, 0])
model.xinitidx = range(2, 8)

11.16.2 Generating a real-time SQP solver

We have now populated model with the necessary fields to generate an SQP solver, which
requires settings a few options, as follows:

Matlab

Python

%% Define solver options
codeoptions = getOptions('RobotArmSolver');
codeoptions.maxit = 200; % Maximum number of␣
→˓iterations of inner QP solver
codeoptions.printlevel = 0; % Use printlevel = 2 to␣
→˓print progress (but not for timing)
codeoptions.optlevel = 3;
% Explicit Runge-Kutta 4 integrator
codeoptions.nlp.integrator.Ts = integrator_stepsize;
codeoptions.nlp.integrator.nodes = 5;
codeoptions.nlp.integrator.type = 'ERK4';
% Options for SQP solver
codeoptions.solvemethod = 'SQP_NLP'; % SQP algorithm
codeoptions.nlp.hessian_approximation = 'gauss-newton'; % Gauss-Newton hessian␣
→˓approximation of nonlinear least-squares objective
codeoptions.sqp_nlp.use_line_search = 0; % Disable line-search for␣
→˓efficiency (only doable with Gauss-Newton approximation)
codeoptions.MEXinterface.dynamics = 1; % generate MEX entry␣
→˓point for the dynamics used in the model

%% Generate real-time SQP solver
FORCES_NLP(model, codeoptions);

Define solver options
codeoptions = forcespro.CodeOptions()
codeoptions.maxit = 200 # Maximum number of␣

(continues on next page)

238 Chapter 11. Examples

FORCESPRO User Manual

(continued from previous page)

→˓iterations
codeoptions.printlevel = 0 # Use printlevel = 2 to␣
→˓print progress (but not for timings)
codeoptions.optlevel = 3 # 0 no optimization, 1␣
→˓optimize for size, 2 optimize for speed, 3 optimize for size & speed
codeoptions.nlp.integrator.Ts = integrator_stepsize
codeoptions.nlp.integrator.nodes = 5
codeoptions.nlp.integrator.type = 'ERK4'
codeoptions.solvemethod = 'SQP_NLP'
codeoptions.sqp_nlp.rti = 1
codeoptions.sqp_nlp.maxSQPit = 1

Generate real-time SQP solver
solver = model.generate_solver(codeoptions)

The number of solved QPs in every iteration is set via sqp_nlp.maxSQPit. It is important to
note that disabling the line search in the SQP algorithm does not guarantee global con-
vergence and hence may result in less robust performance, but produces much faster solve
times. Turning off the line search via sqp_nlp.use_line_search is only allowed when the Gauss-
Newton approximation is on.

11.16.3 Calling the generated SQP solver

Once all parameters have been populated, the MEX interface of the solver can be used to
invoke it from MATLAB, or the Python Solver class can be used to use it from within Python:

Matlab

Python

% Set primal initial guess
x0i = model.lb+(model.ub-model.lb)/2;
x0 = repmat(x0i',model.N,1);
problem.x0 = x0;

% Set reference as run-time parameter
problem.all_parameters = ones(model.N,1);

% Set initial condition
problem.xinit = X(:,i);

% Call SQP solver
[output, exitflag, info] = RobotArmSolver(problem);

Set solver parameters
x0i = (model.ub + model.lb) / 2
x0 = np.tile(x0i, (1, model.N))
problem = {"x0": x0, # Primal initial guess to start solver from

"xinit": xinit, # Initial condition
"all_parameters": np.ones((model.N, 1))} # Reference as a real-time␣

→˓parameter

Call SQP solver
output, exitflag, info = solver.solve(problem)

The RobotArmSolver is expected to return an exitflag equal to 1, which corresponds to a suc-
cessful solver. However, note that the QP could become infeasible in some cases. In this case,

Chapter 11. Examples 239

FORCESPRO User Manual

one should expect an exitflag of −8.

11.16.4 Calling the dynamics used in the model directly in MAT-
LAB/Python

The MEX interface for the dynamics used in the formulation of the optimization problem can
also be called directly in MATLAB and in Python, the Solver class has a method which can
compute the dynamics along with its derivative (see section Calling the nonlinear functions
from Matlab or Python). This is convenient for debugging a solver formulation or simulating
the system dynamics. This can be done as follows:

Matlab

Python

% Set data at first stage
z = problem.x0(1:model.nvar);
p = problem.all_parameters(1:model.npar);

[c, jacc] = RobotArmSolver_dynamics(z, p);

Set data at first stage
z = problem['x0'][0:model.nvar]
p = problem['all_parameters'][0:model.npar]
c, jacc = solver.dynamics(z,p)

This stores the integrated stage in c and its jacobian with respect to z in jacc.

11.16.5 Results

The control objective is to track the joint references of −1.2 rad and 1.2 rad respectively, while
keeping the input torque rates below 200 Nm/s in magnitude and the torque states between
−100 N and 70 Nm.

The joint angle and torques trajectories are shown in Figure Figure 11.49 and Figure Figure
11.50 respectively, while the input torque rates are plotted in Figure Figure 11.51. The closed-
loop objective, which is a measure of the control performance is shown in Figure Figure 11.52.

240 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.49: Manipulator’s joint angle.

Figure 11.50: Manipulator’s torques at joints.

Chapter 11. Examples 241

FORCESPRO User Manual

Figure 11.51: Manipulator’s torque rates.

Figure 11.52: Manipulator’s closed loop objective.

242 Chapter 11. Examples

FORCESPRO User Manual

11.17 Controlling a DC motor using a FORCESPRO SQP solver

• Defining the MPC problem

– The tracking objective function

– The dynamics

– Input and state constraints

– Generating the FORCESPRO SQP solver

– Calling the solver

– Results

In this example our aim is to control a DC-motor using a FORCESPRO SQP solver. The model
for the DC motor which we consider is borrowed from [BerUnb], to which we refer for further
details. The dynamics of our model is described by the following set of ordinary differential
equations:

�̇�1(𝑡) = −𝑅𝑎
𝐿𝑎

𝑥1(𝑡) − 𝑘𝑚
𝐿𝑎

𝑢(𝑡)𝑥2(𝑡) +
𝑢𝑎
𝐿𝑎

�̇�2(𝑡) = −𝐵
𝐽
𝑥2(𝑡) +

𝑘𝑚
𝐽
𝑢(𝑡)𝑥1(𝑡) − 𝜏𝑙

𝐽
.

The states 𝑥1 and 𝑥2 model the armature current and motor angular speed of out DC motor
respectively and the control 𝑢models the input field current. The following values are chosen
for our model constants

𝑅𝑎 = 12.548Ω (armature resistance)
𝐿𝑎 = 0.307H (armature inductance)

𝑘𝑚 = 0.23576Nm/A2 (motor constant)
𝑢𝑎 = 60V (armature voltage)
𝐵 = 0.00783Nmsec (total viscuous damping)
𝜏𝐿 = 1.47Nmsec (Load torque)

𝐽 = 0.00385Nmsec2 (total moment of inertia)

The control objective is to track a piecewise constant angular speed. To test the robustness of
out resulting controller we switch reference half way through our simulation. In the first half
of the simulation we will track a constant angular speed 𝑥𝑟𝑒𝑓12 = 2 and then switch to tracking
a constant angular speed 𝑥𝑟𝑒𝑓22 = −2. We collect the 2-dimensional state vector 𝑥 = (𝑥1, 𝑥2)𝑇

and the 1-dimensional control 𝑢 in the vector

𝑧 =

⎛⎝ 𝑢
𝑥1
𝑥2

⎞⎠
You can find the Matlab code below for this example to try it out for yourself in the examples
folder that comes with your client.

11.17.1 Defining the MPC problem

The tracking objective function

Since we want to track a reference value it is natural to consider a least squared cost 𝑓(𝑧, 𝑝) =
||𝑟(𝑧,𝑝)||2

2 for

𝑟(𝑧, 𝑝) = 𝑧3 − 𝑝

Chapter 11. Examples 243

FORCESPRO User Manual

Recall that 𝑧3 = 𝑥2 models the motor angular speed which is made to track a piecewise con-
stant reference. The parameter 𝑝 will be equal to 𝑥𝑟𝑒𝑓12 during the first half of the simulation
and equal to 𝑥𝑟𝑒𝑓22 during the second.

The following code snippet reads in the least squared objective

model.LSobjective = @(z,p) sqrt(100) * (z(3) - p);
model.LSobjectiveN = @(z,p) sqrt(100) * (z(3) - p);

The dynamics

The following code snippet reads in the dynamics (11.17) of our model:

%% model parameters
% Armature inductance (H)
La = 0.307;
% Armature resistance (Ohms)
Ra = 12.548;
% Motor constant (Nm/A^2)
km = 0.23576;
% Total moment of inertia (Nm.sec^2)
J = 0.00385;
% Total viscous damping (Nm.sec)
B = 0.00783;
% Load torque (Nm)
tauL = 1.47;
% Armature voltage (V)
ua = 60;

model.E = [zeros(2,1), eye(2)];
model.continuous_dynamics = @(x,u) [(-1/La)*(Ra*x(1) + x(2)*u(1) - ua);...

(-1/J)*(B*x(2) - km*x(1)*u(1) + tauL)];

Input and state constraints

The following constraints are to be met by out control and state vectors:

1A ≤ 𝑢 ≤ 1.6A
−5A ≤ 𝑥1 ≤ 5A

−10 rad
sec ≤ 𝑥2 ≤ 10 rad

sec

This can be read into the FORCESPRO model as follows

model.lb = [1, -5, -10];
model.ub = [1.6, 5, 10];

Generating the FORCESPRO SQP solver

To generate a suitable SQP solver for out MPC problem one need a model struct as well as
a codeoptions struct. Our model struct has been populated above and we now specify the
codeoptions we want and generating the solver by calling FORCES_NLP. The following code-
snippet shows how this can be done:

244 Chapter 11. Examples

FORCESPRO User Manual

%% set codeoptions
codeoptions = getOptions('FORCESPROSolver');
codeoptions.solvemethod = 'SQP_NLP'; % generate SQP solver
codeoptions.nlp.integrator.type = 'ERK4';
codeoptions.nlp.integrator.Ts = 0.01;
codeoptions.nlp.integrator.nodes = 1;
codeoptions.nlp.hessian_approximation = 'gauss-newton';
codeoptions.server = 'https://forces.embotech.com';

%% generate FORCESPRO solver
FORCES_NLP(model, codeoptions);

Calling the solver

Once the solver has been generated it needs a struct containing an initial guess, initial condi-
tion of the ODE, the run-time parameters and the reinitialize field as explained in Sequen-
tial quadratic programming algorithm. The following code-snippet shows how this can be
done:

% populate run time parameters struct
params.all_parameters = repmat(2, model.N, 1);
params.xinit = zeros(model.neq, 1); % initial condition to ODE
params.x0 = repmat([1.2;zeros(2,1)], model.N, 1); % initial guess
params.reinitialize = 0;

% Solve optimization problem
[output, exitflag, info] = FORCESPROSolver(params);

The FORCESPROSolver is expected to return an exitflag equal to 1, which corresponds to a
successful solve. However, note that the QP could become infeasible in some cases. In this
case, one should expect an exitflag equal to −8.

Results

The control objective is to track an angular speed of 2 and -2 respectively. As can be seen in
Figure 11.57 the controller completes this task. The control (𝑢) is plotted in Figure 11.53, the first
state (𝑥1) is plotted in Figure 11.54 and second state (𝑥2) in Figure 11.55. As a measure of control
quality, the closed loop objective value is plotted in Figure 11.56.

Chapter 11. Examples 245

FORCESPRO User Manual

Figure 11.53: The control (𝑢, in blue) as a function of simulation time (s). The control obeys its
constraints (red) throughout the simulation.

Figure 11.54: The first state (𝑥1, in blue) as a function of simulation time. It obeys its constraints
(red) throughout the simulation.

246 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.55: The second state (𝑥2, in blue) as a function of simulation time. It obeys its con-
straints (red) throughout the simulation.

Figure 11.56: Closed-loop objective value as a function of time

Chapter 11. Examples 247

FORCESPRO User Manual

Figure 11.57: Angular speed (blue) and tracked reference (red) value as a function of time.

11.18 Mixed-integer nonlinear solver: F8 Crusader aircraft

• Defining the problem data

– Objective

– Equality constraints

– Inequality constraints

– Initial and final conditions

• Defining the MPC problem

• Generating an MINLP solver

• Calling the generated MINLP solver

• Providing an initial guess at run-time

• Changing the parallelization strategy at run-time

• Results

In this example we illustrate the simplicity of the high-level user interface on a mixed-integer
nonlinear program. In particular, we use an F8 Crusader aircraft model described by a set of
ordinary differential equations (ODEs):

�̇�0 = − 0.877𝑥0 + 𝑥2 − 0.088𝑥0𝑥2 + 0.47𝑥20 − 0.019𝑥21 − 𝑥20𝑥2 + 3.846𝑥30

− 0.215𝑤 + 0.28𝑥20𝑤 + 0.47𝑥0𝑤
2 + 0.63𝑤3

�̇�1 =𝑥2

�̇�2 = − 0.4208𝑥0 − 0.396𝑥2 − 0.47𝑥20 − 3.564𝑥30 − 20.967𝑤

+ 6.265𝑥20𝑤 + 46𝑥0𝑤
2 + 61.4𝑤3

The model is taken from [GarJor77] and consists of three differential states: 𝑥0 the angle of
attack in radians, 𝑥1 the pitch angle in radians and 𝑥2 the pitch angle rate in radians per sec-
ond. There is one control input 𝑤, the tail deflection angle in radians. The input is the discrete
component of the model, since it can take values within the discrete set {−0.05236, 0.05236}.

248 Chapter 11. Examples

FORCESPRO User Manual

This makes the solution process more complicated in comparison to a nonlinear program, as
the different combinations of inputs have to be checked over the control horizon.

The trajectory of the aircraft is to be computed by solving a mixed-integer nonlinear program
(MINLP). First, we define the stage variable 𝑧 by stacking the input and differential state vari-
ables:

𝑧 = [𝑤, 𝑥0, 𝑥1, 𝑥2]⊤

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

11.18.1 Defining the problem data

Objective

Our goal is to minimize the distance of the final state to the origin, which can be translated
in the following cost function on the final stage variable:

𝑓(𝑧) = 150𝑥20 + 5𝑥21 + 5𝑥22

The terminal cost function is coded in MATLAB as the following function:

model.objectiveN = @(z) 150 * z(2)^2 + 5 * z(3)^2 + 5 * z(4)^2;

Moreover, control inputs are penalized at every stage via the following stage cost function:

model.objective = @(z) 0.1 * z(1)^2;

Equality constraints

In this example, the only equality constraints are related to the dynamics. They are provided
to FORCESPRO in continuous form. The discretization is then computed internally by the
FORCESPRO integrators.

In the code snippet below, it is important to notice that the control input 𝑤 is replaced with 𝑢
such that

𝑤 =̂ 0.05236 · (2𝑢− 1)

If 𝑤 has values within {−0.05236, 0.05236}, then 𝑢 lies within the binary set {0, 1}.

wa = 0.05236;
wa2 = wa^2;
wa3 = wa^3;
continuous_dynamics = @(x, u) [-0.877 * x(1) + x(3) - 0.088 * x(1) * x(3)...

+ 0.47 * x(1) * x(1) - 0.019 * x(2) * x(2)...
- x(1) * x(1) * x(3)...
+ 3.846 * x(1) * x(1) * x(1)...
- 0.215 * wa * (2 * u(1) - 1)...
+ 0.28 * x(1) * x(1) * wa * (2 * u(1) - 1)...
+ 0.47*x(1)*wa2*(2*u(1)-1)*(2*u(1)-1)...
+ 0.63*wa3*(2*u(1)-1)*(2*u(1)-1)*(2*u(1)-1);
x(3);
-4.208*x(1) - 0.396 * x(3) - 0.47 * x(1)*x(1)...
- 3.564 * x(1) * x(1) * x(1)...

(continues on next page)

Chapter 11. Examples 249

FORCESPRO User Manual

(continued from previous page)

- 20.967 * wa * (2 * u(1) - 1)...
+ 6.265 * x(1) * x(1) * wa * (2 * u(1) -1)...
+ 46.0 * x(1)*wa2*(2*u(1)-1)*(2*u(1)-1)...
+ 61.4*wa3*(2*u(1)-1)*(2*u(1)-1)*(2*u(1)-1)];

model.continuous_dynamics = continuous_dynamics;
model.E = [zeros(3, 1), eye(3)];

Inequality constraints

The maneuver is subjected to a set of constraints, involving only the simple bounds:

0 rad ≤𝑢 ≤ 1 rad

−10 rad ≤𝑥0 ≤ 10 rad

−10 rad ≤𝑥1 ≤ 10 rad

−10 rad/sec ≤𝑥2 ≤ 10 rad/sec

Initial and final conditions

The goal of the maneuver is to steer the aircraft from an initial condition with nose pointing
upwards

(0.4655, 0, 0)𝑇

to the origin.

11.18.2 Defining the MPC problem

With the above defined MATLAB functions for objective and equality constraints, we can com-
pletely define the MINLP formulation in the next code snippet. For this example, the number
of stages has been set to 𝑁 = 100.

In the code snippet below, it is important to notice that the lower and upper bounds are
declared as parametric before generating the solver. This needs to be done for generating
mixed-integer NLP solvers. Lower and upper bounds are meant to be provided at run-time.

%% Problem dimension
nx = 3;
nu = 1;
nz = nx + nu;
model.N = 100;
model.nvar = nz;
model.neq = nx;

%% Indices of initial state in stage variable
model.xinitidx = nu+1:model.nvar;

%% Lower and upper bound need to be set as parametric for generating an MINLP solver
model.lb = [];
model.ub = [];
model.lbidx{1} = 1 : nu;
model.ubidx{1} = 1 : nu;

(continues on next page)

250 Chapter 11. Examples

FORCESPRO User Manual

(continued from previous page)

for i = 2 : model.N
model.lbidx{i} = 1 : model.nvar;
model.ubidx{i} = 1 : model.nvar;

end

%% Dynamics
wa = 0.05236;
wa2 = wa^2;
wa3 = wa^3;
continuous_dynamics = @(x, u) [-0.877 * x(1) + x(3) - 0.088 * x(1) * x(3)...

+ 0.47 * x(1) * x(1) - 0.019 * x(2) * x(2)...
- x(1) * x(1) * x(3)...
+ 3.846 * x(1) * x(1) * x(1)...
- 0.215 * wa * (2 * u(1) - 1)...
+ 0.28 * x(1) * x(1) * wa * (2 * u(1) - 1)...
+ 0.47 *x(1)*wa2*(2*u(1)-1)*(2*u(1)-1)...
+ 0.63*wa3*(2*u(1)-1)*(2*u(1)-1)*(2*u(1)-1);
x(3);
-4.208 * x(1) - 0.396 * x(3)...
- 0.47 * x(1) * x(1)...
- 3.564 * x(1) * x(1) * x(1)...
- 20.967 * wa * (2 * u(1) - 1)...
+ 6.265*x(1)*x(1)*wa*(2*u(1)-1)...
+ 46.0*x(1)*wa2*(2*u(1)-1)*(2*u(1)-1)...
+ 61.4*wa3*(2*u(1)-1)*(2*u(1)-1)*(2*u(1)-1)];

model.continuous_dynamics = continuous_dynamics;
model.E = [zeros(nx, nu), eye(nx)];

%% Objective
mode.objective = @(z) 0.1 * z(nu)^2;
model.objectiveN = @(z) 150 * z(nu+1)^2...

+ 5 * z(nu+2)^2...
+ 5 * z(nu+3)^2;

%% Indices of integer variables within every stage
for s = 1:model.N
model.intidx{s} = [1];

end

11.18.3 Generating an MINLP solver

We have now populated model with the necessary fields to generate a mixed-integer solver for
our problem. Now we set some options for our solver and then use the function FORCES_NLP
to generate a solver for the problem defined by model with the initial state and the lower and
upper bounds as a parameters:

%% Set code-generation options
codeoptions = getOptions('F8aircraft');
codeoptions.printlevel = 1;
codeoptions.misra2012_check = 1;
codeoptions.maxit = 2000;
codeoptions.timing = 0;
codeoptions.nlp.integrator.type = 'IRK2';
codeoptions.nlp.integrator.Ts = 0.05;
codeoptions.nlp.integrator.nodes = 20;

(continues on next page)

Chapter 11. Examples 251

FORCESPRO User Manual

(continued from previous page)

%% Generate MINLP solver
FORCES_NLP(model, codeoptions);

In the code snippet above, we have set some integrator options, since the continuous-time
dynamics has been provided in the model. The branch-and-bound search can be run on sev-
eral threads in parallel by setting the run-time parameter numThreadsBnB equal to the number
of threads to be used. The default value is 1. Moreover, the maximum number of threads
for the branch-and-bound search can be set via the option max_num_threads. By default,
max_num_threads = 4.

11.18.4 Calling the generated MINLP solver

Once all parameters have been populated, the MEX interface of the solver can be used to
invoke it:

%% Set run-time parameters
problem.(sprintf('lb%02d', 1)) = 0;
problem.(sprintf('ub%02d', 1)) = 1;
for s = 2:99
problem.(sprintf('lb%02d', s)) = [0, -1e1 * ones(1, 3)]';
problem.(sprintf('ub%02d', s)) = [1, 1e1 * ones(1, 3)]';

end
problem.(sprintf('lb%02d', 100)) = [0, -1e1 * ones(1, 3)]';
problem.(sprintf('ub%02d', Nstages)) = [1, 1e1 * ones(1, 3)]';

problem.x0 = repmat([0; zeros(3, 1)], 100, 1);
problem.xinit = zeros(3, 1);
problem.xinit(1) = 0.4655;

%% Call MINLP solver
[sol, exitflag, info] = F8aircraft(problem);

11.18.5 Providing an initial guess at run-time

In order to provide an guess for the incumbent, the following code-generation options need
to be enabled:

codeoptions.minlp.int_guess = 1;
codeoptions.minlp.round_root = 0; % Default value is 1
codeoptions.minlp.int_guess_stage_vars = [1]; % An integer guess is provided for␣
→˓variable 1 at every stage

Then the incumbent guess can be set at run-time via

for s = 1:Nstages
problem.(sprintf('int_guess%03d', s)) = [0];

end
for s = 1:2
problem.(sprintf('int_guess%03d', s)) = [1];

end
problem.(sprintf('int_guess%03d', 39)) = [1];
for s = 41:42
problem.(sprintf('int_guess%03d', s)) = [1];

(continues on next page)

252 Chapter 11. Examples

FORCESPRO User Manual

(continued from previous page)

end
for s = 85:90
problem.(sprintf('int_guess%03d', s)) = [1];

end

11.18.6 Changing the parallelization strategy at run-time

When running the MINLP solver on several threads with numThreadsBnB >= 1, the paralleliza-
tion strategy can be changed via

problem.parallelStrategy = 0; % 0 (one shared priority queue, default), 1 (one␣
→˓priority queue per thread)

11.18.7 Results

The control objective is to drive the angle of attack as close as possible to zero within a five
seconds time frame. The control input is the tail deflection angle, which can take values with
the set {−0.05236, 0.05236} and the initial state is (0.4655, 0, 0)𝑇 , where the first component is
the angle of attack, the second component is the pitch angle and the third component is the
pitch angle rate.

The angle of attack computed by FORCESPRO MINLP solver running on one thread is shown
in Figure Figure 11.58 and the input sequence is in Figure Figure 11.59. One can notice the
bang-bang behaviour of the solution. When running on three threads the FORCESPRO
MINLP solver provides a solution with lower final primal objective. Results are shown on Fig-
ures Figure 11.60 and Figure 11.61.

Figure 11.58: Aircraft’s angle of attack over time computed with one thread.

Chapter 11. Examples 253

FORCESPRO User Manual

Figure 11.59: Aircraft’s tail deflection angle over time with one thread.

Figure 11.60: Aircraft’s angle of attack over time computed with three threads.

254 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.61: Aircraft’s tail deflection angle over time with three threads.

Chapter 11. Examples 255

FORCESPRO User Manual

11.19 High-level interface: Optimal EV charging and speed
profile example (MATLAB & PYTHON)

• Problem Overview

– Vehicle Dynamics

– Vehicle Energetics

– Bounds

– MPC Formulation

– Model Parameters

• Defining the MPC Problem

– Objective function

– Equality constraints

– Inequality constraints

– Generating the FORCESPRO NLP solver

– Calling the solver

– Results

Note: We can find an updated and more realistic version of this example in Section 11.19. This
example is kept in the documentation for legacy purposes.

In this example we illustrate the simplicity of the high-level user interface on an optimal elec-
tric vehicle (EV) speed and charging management. The controller plans the car’s speed and
charging trajectory such that the given route is traversed in the shortest time possible, while
simultaneously respecting speed limits as well as vehicle’s and battery’s technical require-
ments.

11.19.1 Problem Overview

We consider a single EV and a fixed route with given road slopes (i.e. angles) and speed
limits. Optionally, some charging stations could be available at predefined locations along
the road. Vehicle operation is defined by longitudinal vehicle dynamics, powertrain efficiency
and battery capacity. Due to the spatial characteristic of the problem, the formulation is dis-
cretized in space domain. This problem is primarily based on the work in [JiaJibItoGor19] and
[JiaJibGor20].

Vehicle Dynamics

Assuming a sample distance 𝐿s, the longitudinal velocity of the vehicle in space domain at
the discrete step (𝑖+ 1) ∈ ℐ can be determined using the velocity at the previous step (𝑖) and
the difference in kinetic energy between these two consecutive steps, as follows:

1

2
𝑚eq

(︀
𝑣2𝑖+1 − 𝑣2𝑖

)︀
= 𝐿s (𝐹t,𝑖 − 𝐹b,𝑖 − 𝐹r,𝑖)

256 Chapter 11. Examples

FORCESPRO User Manual

where the resistance force is comprised of the following three components:

𝐹r,𝑖 = 𝑐r𝑚v𝑔 cos (𝛼i)⏟ ⏞
rolling resistance

+ 𝑚v𝑔 sin (𝛼i)⏟ ⏞
gravitational force

+
1

2
𝑐a𝐴f𝜌a𝑣

2
𝑖⏟ ⏞

air drag force

The equivalent mass 𝑚eq = 𝑚v(1 + 𝑒I) includes vehicle mass 𝑚v and the effect of all rotational
masses captured by the mass factor 𝑒I. The road slope is represented by the road angle 𝛼.
Variables 𝐹t ≥ 0 and 𝐹b ≥ 0 represent the traction and braking forces on the wheels, which are
generated by the powertrain and mechanical braking system separately (note: regenerative
braking capabilities could be included by allowing the traction power to be negative). The
total driving resistance 𝐹r comprises rolling resistance force, gravitational force and air drag
force (while neglecting the direct impact of wind speed), with 𝑐a being the air drag coefficient,
𝐴f the projected frontal area, 𝜌a the air density, 𝑔 the gravitational acceleration, and 𝑐r the
rolling resistance coefficient.

The vehicle’s velocity dynamics are thus defined by

𝑣𝑖+1 =

√︃
2 (𝐹t,𝑖 − 𝐹b,𝑖 − 𝐹r,𝑖)𝐿s

𝑚eq
+ 𝑣2𝑖

with the assumption that the speed is constant while traversing a single discrete road seg-
ment. Note that the expression below the square root must be strictly positive in order for the
problem to be feasible, as will be discussed later on. In addition to velocity, the time is also a
state variable of the model and can be computed as

𝑡𝑖+1 = 𝑡𝑖 +
𝐿s

𝑣𝑖

Vehicle Energetics

EV’s powertrain efficiency 𝜂(𝑣, 𝐹t, 𝜁) is a function of vehicle’s speed, traction force and battery’s
state-of-charge (SoC), as shown by the efficiency maps depicted in Figure 11.62. Nevertheless,
the impact of SoC on powertrain efficiency is negligible as SoC does not change dramatically
within a short time period if the battery capacity is sufficiently large. Therefore, one could
generate several 2D maps of the form 𝜂(𝑣, 𝐹t), pre-calculated at different SoC levels such that
the most accurate one can be selected according to the current SoC.

For the purpose of this example, we have have generated a single 2D efficiency map depicted
in Figure 11.63 used across all SoC levels. However, for simplicity, the implementation in this
example is confined to 1D efficiency map 𝜂(𝐹t) extracted for 𝑣 = 15 m/s.

The 1D efficiency map 𝜂(𝐹t) can be computed in the form of a cubic spline function as follows:

Matlab

Python

function etaMotorSpline = setupMotorEfficiency(FtMax)
% Returns cubic spline representing motor efficiency as a function of
% traction force.
%
% The data is taken from "Jia, Y.; Jibrin, R.; Goerges, D.: Energy-Optimal
% Adaptive Cruise Control for Electric Vehicles Based on Linear and
% Nonlinear Model Predictive Control. In: IEEE Transactions on Vehicular
% Technology, vol. 69, no. 12, pp. 14173-14187, Dec. 2020."

FtSample = 0:0.1*FtMax:FtMax;
etaSample = [0.835, 0.865, 0.9, 0.85, 0.79, 0.75, 0.72, 0.72, 0.72, 0.72, 0.72];

etaMotorSpline = ForcesInterpolationFit(FtSample,etaSample);
end

Chapter 11. Examples 257

FORCESPRO User Manual

Figure 11.62: 2D efficiency maps of the EV’s powertrain with two different SoC levels taken
from [JiaJibGor20]: (top) 𝜂 with SoC 𝜁 = 10 %; (bottom) 𝜂 with SoC 𝜁 = 90 %.

258 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.63: Generated 2D EV efficiency map. Note that we are using a simplified 1D efficiency
map 𝜂(𝐹t) taken for 𝑣 = 15 m/s in this example.

Chapter 11. Examples 259

FORCESPRO User Manual

def setupMotorEfficiency(self):
"""
Returns cubic spline representing motor efficiency as a function of traction␣

→˓force.

The data is taken from "Jia, Y.; Jibrin, R.; Goerges, D.: Energy-Optimal Adaptive␣
→˓Cruise Control for Electric Vehicles Based on Linear and Nonlinear Model Predictive␣
→˓Control. In: IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp. 14173-
→˓14187, Dec. 2020."

"""
FtSample = np.linspace(0, self.FtMax, 11)
etaSample = np.array([0.835, 0.865, 0.9, 0.85, 0.79, 0.75, 0.72, 0.72, 0.72, 0.72,

→˓ 0.72])
etaMotorSpline = forcespro.modelling.InterpolationFit(FtSample, etaSample)

return etaMotorSpline

Assuming a set of predefined charging stops at discrete spatial steps 𝑘 ∈ 𝒦 ⊂ ℐ , we can
include either optional or mandatory charging at each of those stops (to be defined by the
user). Given the implemented powertrain efficiency 𝜂𝑖(𝐹t,𝑖) and potential charging decisions,
the driving energy depletion and charging instances are incorporated into the SoC dynamics
at discrete step 𝑖 as:

𝜁𝑖+1 = 𝜁𝑖 −
𝐹t,𝑖𝐿s

𝜂𝑖𝐸cap
+
𝑃ch,𝑖

𝐸cap
∆𝑡𝑖

where 𝐸cap denotes the battery’s energy capacity, 𝑃ch,𝑖(𝜁𝑖) is a vehicle’s charging power de-
pendent on the SoC, and ∆𝑡𝑖 is a total charging time spent at location 𝑖 ∈ 𝒦. Note that SoC 𝜁
is normalized on an interval [0, 1].

In this example we will particularly focus on the performance of a BMW i3. The charging pro-
files𝑃ch(𝜁) for three production models with different battery capacities are depicted in Figure
11.64 [Fastned], and can be approximated by a piecewise-affine function shown in Figure 11.65.

Figure 11.64: Actual charging profile of BMW i3 as a function of vehicle’s SoC.

260 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.65: Implemented piecewise-affine charging profile for the 42 kWh vehicle as a func-
tion of vehicle’s SoC.

The code for computing the 𝑃ch(𝜁) spline function is given below. Note that the Python im-
plementation uses a shape-preserving piecewise-cubic representation instead of piecewise-
linear one.

Matlab

Python

function Pch = setupChargingPower(PchMax)
% Returns piecewise linear representation of charging power as a
% function of vehicle's SoC.
%
% The data is taken from Fastned charging chart available at
% https://support.fastned.nl/hc/en-gb/articles/204784718-Charging-with-a-BMW-i3
%
% NOTE: Python example uses shape-preserving piecewise cubic spline
% approximation ('pchip') which might lead to negligible result
% discrepancies between the two clients when directly compared.

socSample = [0.15, 0.85, 1.0];
PchSample = [0.88, 1, 0.2]*PchMax;
Pch = ForcesInterpolationFit(socSample,PchSample,'linear');

end

def setupChargingPower(self):
"""
Returns shape-preserving piecewise cubic spline representation of charging power␣

→˓as a function of SoC.

(continues on next page)

Chapter 11. Examples 261

FORCESPRO User Manual

(continued from previous page)

The data is taken from Fastned charging chart available at https://support.
→˓fastned.nl/hc/en-gb/articles/204784718-Charging-with-a-BMW-i3

NOTE: Matlab example uses piecewise linear approximation which might lead to␣
→˓negligible result discrepancies between the two clients when directly compared.

"""
socSample = np.array([0.15, 0.85, 1.0])
PchSample = np.array([0.88, 1, 0.2]) * self.PchMax
PchSpline = forcespro.modelling.InterpolationFit(socSample, PchSample, 'pchip')

return PchSpline

Clearly, the time dynamics would have to be modified as well:

𝑡𝑖+1 = 𝑡𝑖 +
𝐿s

𝑣𝑖
+ ∆𝑡𝑖

with ∆𝑡𝑖 ≈ 0 for all non-charging spatial steps 𝑖 /∈ 𝒦, and 𝑣𝑖 ≈ 𝑣 for all charging spatial steps
𝑖 ∈ 𝒦, with 𝑣 > 0 being th lower speed bound. The latter is not set to zero for two reasons: 1) it
would lead to infeasibility due to 𝑣𝑖 being in the denominator; 2) it reflects the average speed
across the distance 𝐿𝑠, which includes both the driving and the charging instances, and is
therefore greater than zero. This implies that the final vehicle model comprises three states
𝑥 = [𝑣, 𝑡, 𝜁]⊤ and three control inputs 𝑢 = [𝐹t, 𝐹b,∆𝑡]

⊤, with the model dynamics described by

𝑣𝑖+1 =

√︃
2 (𝐹t,𝑖 − 𝐹b,𝑖 − 𝐹r,𝑖)𝐿s

𝑚eq
+ 𝑣2𝑖

𝑡𝑖+1 = 𝑡𝑖 +
𝐿s

𝑣𝑖
+ ∆𝑡𝑖

𝜁𝑖+1 = 𝜁𝑖 −
𝐹t,𝑖𝐿s

𝜂𝑖𝐸cap
+
𝑃ch,𝑖

𝐸cap
∆𝑡𝑖

Additionally, we will include a slack variable 𝑠 ≥ 0 into control vector 𝑢, as it is used to relax the
upper and lower bounds on vehicle’s SoC.

Bounds

In terms of bounds on state variables, we impose upper and lower limits on vehicle’s velocity
and SoC, dictated by the road speed limits and battery specifications:

𝑣 ≤ 𝑣𝑖 ≤ 𝑣𝑖

𝜁 − 𝑠𝑖 ≤ 𝜁𝑖 ≤ 𝜁 + 𝑠𝑖

The upper speed bound 𝑣𝑖 is stage-dependent, dictated by the spatial discretization of the
road speed limits, whereas the lower speed bound 𝑣 is kept constant across all stages. For
charging instances 𝑖 ∈ 𝒦, the upper speed bound can optionally be set to 𝑣𝑖 ≈ 𝑣, indicating
that the vehicle has to reduce speed. The SoC limits 𝜁 and 𝜁 are also stage independent and
implemented as soft bounds.

All control variables are nonnegative and upper bounded with appropriate physical and tech-
nical limits:

0 ≤ ∆𝑡𝑖 ≤ ∆𝑡𝑖

0 ≤ 𝐹t,𝑖 ≤ 𝐹 t,𝑖

0 ≤ 𝐹b,𝑖 ≤ 𝐹 b

Here, ∆𝑡𝑖 denotes maximum permissible charging time and is set to ∆𝑡𝑖 ≈ 0,∀𝑖 /∈ 𝒦, whereas
𝐹 t,𝑖 and 𝐹 b are vehicle’s physical upper bounds on maximum traction and breaking force,

262 Chapter 11. Examples

FORCESPRO User Manual

respectively. Note that the traction force limit is comprised of the constant friction limit 𝐹 t

and the hyperbolic traction function of vehicle’s velocity 𝐹 hyp

t,𝑖 (𝑣𝑖), i.e.

𝐹 t,𝑖 = min
(︁
𝐹 t, 𝐹

hyp

t,𝑖 (𝑣𝑖)
)︁

as depicted in Figure 11.66. The actual function implemented in this example is showcased in
Figure 11.67.

Figure 11.66: Maximum permissible traction force as a function of vehicle’s velocity taken from
[xEngineer].

The computation of ideal traction hyperbola 𝐹 t,hyp(𝑣) in the cubic spline form is provided be-
low.

Matlab

Python

function FtMaxHypSpline = setupTractionForceHyperbola(vMax,FtMax)
% Returns cubic spline representing maximum traction force as a function of
% vehicle's speed
%
% The data is generated based on the technical article provided at
% https://x-engineer.org/need-gears/

vSample = [0.25, 0.4, 0.6, 0.8, 1.0]*vMax;
FtMaxHypSample = [1.0, 0.67, 0.43, 0.32, 0.28]*FtMax;
FtMaxHypSpline = ForcesInterpolationFit(vSample,FtMaxHypSample);

end

def setupTractionForceHyperbola(self):
"""
Returns cubic spline representing motor efficiency as a function of traction␣

→˓force.

(continues on next page)

Chapter 11. Examples 263

FORCESPRO User Manual

Figure 11.67: Implemented traction force hyperbola as a function of vehicle’s velocity.

(continued from previous page)

The data is generated based on the technical article provided at https://x-
→˓engineer.org/need-gears/

"""
vSample = np.array([0.25, 0.4, 0.6, 0.8, 1.0]) * self.kmh2ms(self.vMax)
FtMaxHypSample = np.array([1.0, 0.67, 0.43, 0.32, 0.28]) * self.FtMax
FtMaxHypSpline = forcespro.modelling.InterpolationFit(vSample, FtMaxHypSample)

return FtMaxHypSpline

264 Chapter 11. Examples

FORCESPRO User Manual

MPC Formulation

A complete MPC problem formulation can thus be described as follows:

minimize 𝑡𝑁 +

𝑁−1∑︁
𝑖=0

(︀
𝜔s𝑠𝑖 + 𝜔e𝐹

2
t,𝑖 + 𝜔b𝐹

2
b,𝑖

)︀
subject to 𝑣𝑖+1 =

√︃
2𝐿s

𝑚eq
(𝐹t,𝑖 − 𝐹b,𝑖 − 𝐹r,𝑖) + 𝑣2𝑖

𝑡𝑖+1 = 𝑡𝑖 + 𝐿s𝑣
−1
𝑖 + ∆𝑡𝑖

𝜁𝑖+1 = 𝜁𝑖 −
𝐿s

𝜂𝑖𝐸cap
𝐹t,𝑖 +

𝑃ch,𝑖

𝐸cap
∆𝑡𝑖

𝑣 ≤ 𝑣𝑖 ≤ 𝑣𝑖

𝜁 − 𝑠𝑖 ≤ 𝜁𝑖 ≤ 𝜁 + 𝑠𝑖

0 ≤ ∆𝑡𝑖 ≤ ∆𝑡𝑖

0 ≤ 𝐹t,𝑖 ≤ 𝐹 t,𝑖

0 ≤ 𝐹b,𝑖 ≤ 𝐹 b

0 ≤ 𝑠𝑖

𝑥0 = 𝑥init

with the objective function explained in detail in the subsequent sections.

Model Parameters

As stated previously, in this example we focus on a highest energy capacity model of BMW
i3, defined by the following parameters obtained from [BMWi3]:

𝑚v = 1345 kg

𝑒I = 1.06

𝐴f = 2.38 m2

𝜌a = 1.206 kg/m3

𝑐a = 0.29

𝑐r = 0.01

𝐹 t = 5 kN

𝐹 b = 10 kN

𝐸cap = 37.9 kWh

𝑃ch = 50 kW

𝑣 = 30 km/h

𝑣 = 150 km/h

𝜁 = 0.1

𝜁 = 0.9

Matlab

Python

function param = defineVehicleParameters(trip)
% Returns vehicle parameters

%% Constant vehicle parameters (not to be changed)

(continues on next page)

Chapter 11. Examples 265

FORCESPRO User Manual

(continued from previous page)

% The data is obtained from "Technical specifications of the BMW i3
% (120 Ah)" valid from 11/2018 and available at
% https://www.press.bmwgroup.com/global/article/detail/T0285608EN/

% Gravitational acceleration (m/s^2)
param.g = 9.81;
% Vehicle mass (kg)
param.mv = 1345;
% Mass factor (-)
param.eI = 1.06;
% Equivalent mass (kg)
param.meq = (1+param.eI)*param.mv;
% Projected frontal area (m^2)
param.Af = 2.38;
% Air density (kg/m^3)
param.rhoa = 1.206;
% Air drag coefficient (-)
param.ca = 0.29;
% Rolling resistance coefficient (-)
param.cr = 0.01;
% Maximum traction force (N)
param.FtMax = 5e3;
% Minimum traction force (N)
param.FtMin = 0;
% param.FtMin = -1.11e3;
% Maximum breaking force (N)
param.FbMax = 10e3;
% Battery's energy capacity (Wh)
% BMW i3 60Ah - 18.2kWh; BMW i3 94Ah - 27.2kWh; BMW i3 120Ah - 37.9kWh
param.Ecap = 37.9e3;
% Maximum permissible charging time (s)
param.TchMax = 3600;
% Charging power (W)
% 7.4 kW on-board charger on IEC Combo AC, optional 50 kW Combo DC
param.PchMax = 50e3;
% Power dissipation factor (-) (adjusted for Munich - Cologne trip in
% order to achieve realistic BMW i3 range of ~260km
if trip.type == 1

param.pf = 1;
else

param.pf = 0.4;
end
% Minimum vehicle velocity (km/h)
param.vMin = 30;
% Maximum vehicle velocity (km/h)
param.vMax = 150;
% Minimum SoC (-)
param.SoCmin = 0.1;
% Maximum SoC (-)
param.SoCmax = 0.9;

%% Variable vehicle parameters
% Motor efficiency (-)
param.eta = setupMotorEfficiency(param.FtMax);
% Charging power (W)
param.Pch = setupChargingPower(param.PchMax);

(continues on next page)

266 Chapter 11. Examples

FORCESPRO User Manual

(continued from previous page)

% Traction force hyperbola (upper limit) (N)
param.FtMaxHyp = setupTractionForceHyperbola(kmh2ms(param.vMax), param.FtMax);

end

class VehicleParameters:
"""Constant and variable vehicle parameters (not to be changed)"""
def __init__(self, trip):

Constant vehicle parameters
The data is obtained from "Technical specifications of the BMW i3 (120 Ah)"␣

→˓valid from 11/2018 and available at https://www.press.bmwgroup.com/global/article/
→˓detail/T0285608EN/

Gravitational acceleration (m/s^2)
self.g = 9.81
Vehicle mass (kg)
self.mv = 1345
Mass factor (-)
self.eI = 1.06
Equivalent mass (kg)
self.meq = (1 + self.eI) * self.mv
Projected frontal area (m^2)
self.Af = 2.38
Air density (kg/m^3)
self.rhoa = 1.206
Air drag coefficient (-)
self.ca = 0.29
Rolling resistance coefficient (-)
self.cr = 0.01
Maximum traction force (N)
self.FtMax = 5e3
Minimum traction force (N)
self.FtMin = 0
self.FtMin = -1.11e3
Maximum breaking force (N)
self.FbMax = 10e3
Battery's energy capacity (Wh)
BMW i3 60Ah - 18.2kWh BMW i3 94Ah - 27.2kWh BMW i3 120Ah - 37.9kWh
self.Ecap = 37.9e3
Maximum permissible charging time (s)
self.TchMax = 3600
Charging power (W)
7.4 kW on-board charger on IEC Combo AC, optional 50 kW Combo DC
self.PchMax = 50e3
Power dissipation factor (-) (adjusted for Munich - Cologne trip in order to␣

→˓achieve realistic BMW i3 range of ~260km)
if trip.type == 1:

self.pf = 1
else:

self.pf = 0.4
Minimum vehicle velocity (km/h)
self.vMin = 30
Maximum vehicle velocity (km/h)
self.vMax = 150
Minimum SoC (-)
self.SoCmin = 0.1

(continues on next page)

Chapter 11. Examples 267

FORCESPRO User Manual

(continued from previous page)

Maximum SoC (-)
self.SoCmax = 0.9

Variable vehicle parameters

Motor efficiency (-)
self.eta = self.setupMotorEfficiency()
Charging power (W)
self.Pch = self.setupChargingPower()
Traction force hyperbola (upper limit) (N)
self.FtMaxHyp = self.setupTractionForceHyperbola()

Trip parameters are defined by the user. Here we focus on two benchmark studies: 1) a 50 km
long trip with five EV charging stations and low initial SoC; and 2) an actual 573 km long Munich
- Cologne trip with four EV charging stations and fully charged vehicle.

Matlab

Python

% Trip parameters (provided by the user)
% Note: Accuracy and feasibility of the solution are not guaranteed when
% the `trip.reduceSpeed` flag is disabled due to inherent mixed-integer
% nature of the problem!

% Trip type (0 - long (Munich - Cologne); 1 - short)
trip.type = 1;

if trip.type == 1
% Spatial discretization step (km)
trip.Ls = 1;
% Trip distance (km)
trip.dist = 50;
% EV charging station locations (km)
trip.kmPosCh = [8, 18, 30, 40, 45];
% Force vehicle to reduce speed at charging locations (1 - yes; 0 - no)
trip.reduceSpeed = 0;
% Initial vehicle speed (km/h)
trip.initSpeed = 30;
% Initial SoC [0, 1]
trip.initSoC = 0.35;

elseif trip.type == 0
% Spatial discretization step (km)
trip.Ls = 1;
% Trip distance (km)
trip.dist = 573;
% EV charging station locations (km)
trip.kmPosCh = [110, 150, 250, 375];
% Force vehicle to reduce speed at charging locations (1 - yes; 0 - no)
trip.reduceSpeed = 1;
% Initial vehicle speed (km/h)
trip.initSpeed = 30;
% Initial SoC [0, 1]
trip.initSoC = 0.9;

else
error('Incorrect input: trip type should be either 0 or 1.');

end

268 Chapter 11. Examples

FORCESPRO User Manual

class TripParameters:
"""Trip parameters (to be defined by the user)"""
def __init__(self):

Note: Accuracy and feasibility of the solution are not guaranteed when the␣
→˓`trip.reduceSpeed` flag is disabled due to inherent mixed-integer nature of the␣
→˓problem!

Trip type (0 - long (Munich - Cologne) 1 - short)
self.type = 1

assert self.type in [0, 1], 'Incorrect input: trip type should be 0 or 1.'

if self.type == 1:
Spatial discretization step (km)
self.Ls = 1
Trip distance (km)
self.dist = 50
EV charging station locations (km)
self.kmPosCh = np.array([8, 18, 30, 40, 45])
Force vehicle to reduce speed at charging locations
self.reduceSpeed = False
Initial vehicle speed (km/h)
self.initSpeed = 30
Initial SoC [0, 1]
self.initSoC = 0.35

else:
Spatial discretization step (km)
self.Ls = 1
Trip distance (km)
self.dist = 573
EV charging station locations (km)
self.kmPosCh = np.array([110, 150, 250, 375])
Force vehicle to reduce speed at charging locations
self.reduceSpeed = True
Initial vehicle speed (km/h)
self.initSpeed = 30
Initial SoC [0, 1]
self.initSoC = 0.9

You can find the code of this example to try it out for yourself in the examples folder that comes
with your client.

11.19.2 Defining the MPC Problem

Objective function

The primary goal is to minimize the total driving time, i.e. minimize terminal variable 𝑡𝑁 at
the last stage 𝑖 = 𝑁 :

𝑓(𝑧, 𝑝𝑁) = 𝑧(6)

In addition, we want to minimize the stage cost associated with slack variable 𝑠,∀𝑖 ∈ ℐ :

𝑓(𝑧, 𝑝𝑖) = 𝜔s𝑧(1)

where 𝜔s is an appropriately high weight factor.

Chapter 11. Examples 269

FORCESPRO User Manual

Optionally, one could opt for ensuring comfortable driving operation and pursuing energy
economy improvements. In such case, additional terms could be included in the stage cost
function, e.g.

𝑓(𝑧, 𝑝𝑖) = 𝜔s𝑧(1) + 𝜔e𝑧(2)2 + 𝜔b𝑧(3)2

The second term imposes a penalty on consumed energy during driving by reducing the
applied traction force, whereas the third term minimizes the total braking force. The corre-
sponding weight factors 𝜔e and 𝜔b provide a trade-off between different objectives. Further-
more, one could also penalize jerking, i.e. a change in the traction force between consecutive
steps, using another slack variable.

The cost functions are coded in MATLAB and Python as follows:

Matlab

Python

% Assume variable ordering zi = [u{i}; x{i}] for i=1...N
% zi = [slack(i); Ft(i); Fb(i); deltaTch(i); v(i); t(i); SoC(i)]
% pi = [vMax(i); vMin(i); alpha(i); TchMax(i); Ls(k)] #k - iteration No.

% Objective function
R = [1e-7, 0;

0, 1e-6];
slackCostFactor = 1e6;

model.objectiveN = @(z) z(6);
model.objective = @(z) slackCostFactor*z(1);
% model.objective = @(z) slackCostFactor*z(1) + [z(2);z(3)]'*R*[z(2);z(3)];

""""
Assume variable ordering zi = [u{i}, x{i}] for i=1...N
zi = [slack{i}, Ft{i}, Fb{i}, deltaTch{i}, v{i}, t{i}, SoC{i}]
pi = [vMax{i}, vMin{i}, alpha{i}, TchMax{i}, Ls{k}] #k - iteration No.
""""

Objective function
R = np.diag([1e-7, 1e-6])
slackCostFactor = 1e6

model.objectiveN = (lambda z: z[5])
model.objective = (lambda z: slackCostFactor * z[0])
model.objective = (lambda z: slackCostFactor * z[0] + casadi.horzcat(z[1], z[2]) @␣
→˓R @ casadi.vertcat(z[1], z[2]))

Equality constraints

The equality constraints model.eq in this example results from the vehicle’s dynamics and
energetics model given above, and is implemented as follows:

Matlab

Python

% Problem dimensions
nx = 3;
nu = 4;
np = 5;

(continues on next page)

270 Chapter 11. Examples

FORCESPRO User Manual

(continued from previous page)

nh = 7;

model.N = round(trip.dist/trip.Ls); % horizon length
if mod(model.N,1)~=0

error('Incorrect input: trip distance should be an exact multiple of the spatial␣
→˓discretization step.');
end
model.nvar = nx + nu; % number of variables
model.neq = nx; % number of equality constraints
model.nh = nh; % number of inequality constraints
model.npar = np; % number of runtime parameters

% Dynamics, i.e. equality constraints
model.eq = @(z,p) [sqrt(ForcesMax(2*p(5)/param.meq*(z(2) - z(3) - param.cr*param.
→˓mv*param.g*cos(p(3)) - param.mv*param.g*sin(p(3)) - 0.5*param.ca*param.Af*param.
→˓rhoa*z(5)^2) + z(5)^2, 0));

z(6) + p(5)/z(5) + z(4);
z(7) - param.pf*p(5)*z(2)/(3600*param.eta(z(2))*param.Ecap) +␣

→˓param.Pch(z(7))*z(4)/(3600*param.Ecap)];

model.E = [zeros(nx,nu),eye(nx)];

% Initial and final conditions
model.xinitidx = nu+1:nu+nx;

Problem dimensions
nx = 3
nu = 4
npar = 5
nh = 7

model = forcespro.nlp.SymbolicModel()
model.N = round(trip.dist / trip.Ls); # horizon length
assert model.N % 1 == 0, 'Incorrect input: trip distance should be an exact multiple␣
→˓of the spatial discretization step'
model.nvar = nx + nu; # number of variables
model.neq = nx; # number of equality constraints
model.nh = nh; # number of inequality constraints
model.npar = npar; # number of runtime parameters

Objective function
R = np.diag([1e-7, 1e-6])
slackCostFactor = 1e6
model.objective = (lambda z: casadi.horzcat(z[1], z[2]) @ R @ casadi.vertcat(z[1],␣
→˓z[2]))
model.objective = (lambda z: slackCostFactor * z[0])
model.objectiveN = (lambda z: z[5])

Dynamics, i.e. equality constraints
model.eq = lambda z, p: casadi.vertcat(np.sqrt(forcespro.modelling.smooth_max(2 *␣
→˓p[4] /

param.meq * (z[1] - z[2] - param.cr * param.
→˓mv * param.g * np.cos(p[2]) - param.mv * param.g * np.sin(p[2]) - 0.5 * param.ca *␣
→˓param.Af * param.rhoa * z[4]**2) + z[4]**2, 0)),

z[5] + p[4] / z[4] + z[3],
z[6] - param.pf * p[4] * z[1] / (3600 * param.

(continues on next page)

Chapter 11. Examples 271

FORCESPRO User Manual

(continued from previous page)

→˓eta(z[1])* param.Ecap) + param.Pch(z[6]) * z[3] / (3600 * param.Ecap))

model.E = np.concatenate([np.zeros((nx, nu)), np.eye(nx)], axis=1)

Initial and final conditions
model.xinitidx = np.arange(nu, nu + nx);

The use of smooth maximum approximation (see section Section 19.3) ensures a nonnegative
square root term and thus a feasible solution.

Inequality constraints

The inequality constraints model.ineq comprise all decision variable bounds described pre-
viously. For purposes of model feasibility, two additional trivial constraints pertaining to the
vehicle velocity’s square root term are included in the model, as shown in the code-snippets.

Matlab

Python

% Inequality constraints
% Upper/lower variable bounds lb <= z <= ub
% inputs | states
% slack Ft Fb Tch v t ␣
→˓ SoC
model.lb = [0, param.FtMin, 0., 0., kmh2ms(param.vMin), 0.,
→˓ 0.];
model.ub = [0.1, param.FtMax, param.FbMax, param.TchMax, kmh2ms(param.vMax), ␣
→˓+inf, 1.];

% Nonlinear inequalities hl <= h(z,p) <= hu
model.ineq = @(z,p) [z(2) - param.FtMaxHyp(z(5));

z(4) - p(4);
z(7) - param.SoCmax - z(1);
param.SoCmin - z(7) - z(1);
2*p(5)/param.meq*(z(2) - z(3) - param.cr*param.mv*param.

→˓g*cos(p(3)) - param.mv*param.g*sin(p(3)) - 0.5*param.ca*param.Af*param.rhoa*z(5)^2)␣
→˓+ z(5)^2 - kmh2ms(ForcesMax((1-z(4))*p(1), param.vMin+1))^2;

kmh2ms(p(2))^2 - (2*p(5)/param.meq*(z(2) - z(3) - param.cr*param.
→˓mv*param.g*cos(p(3)) - param.mv*param.g*sin(p(3)) - 0.5*param.ca*param.Af*param.
→˓rhoa*z(5)^2) + z(5)^2)];

% Upper/lower bounds for inequalities
model.hu = [0, 0, 0, 0, 0, 0];
model.hl = [-inf, -inf, -inf, -inf, -inf, -inf];

Inequality constraints
Upper/lower variable bounds lb <= z <= ub
inputs | ␣
→˓states
slack Ft Fb Tch v ␣
→˓ t SoC
model.lb = np.array([0., param.FtMin, 0., 0., kmh2ms(param.vMin),␣
→˓ 0., 0.])
model.ub = np.array([0.1, param.FtMax, param.FbMax, param.TchMax, kmh2ms(param.vMax),␣
→˓ np.inf, 1.])

(continues on next page)

272 Chapter 11. Examples

FORCESPRO User Manual

(continued from previous page)

Nonlinear inequalities hl <= h(z,p) <= hu
model.ineq = lambda z,p: casadi.vertcat(z[1] - param.FtMaxHyp(z[4]),

z[3] - p[3],
z[6] - param.SoCmax - z[0],
param.SoCmin - z[6] - z[0],
2 * p[4] / param.meq * (z[1] - z[2] - param.

→˓cr * param.mv * param.g * np.cos(p[2]) - param.mv * param.g * np.sin(p[2]) - 0.5 *␣
→˓param.ca * param.Af * param.rhoa * z[4]**2) + z[4]**2 - kmh2ms(forcespro.modelling.
→˓smooth_max((1 - z[3]) * p[0], param.vMin + 1))**2,

kmh2ms(p[1])**2 - (2 * p[4] / param.meq *␣
→˓(z[1] - z[2] - param.cr * param.mv * param.g * np.cos(p[2]) - param.mv * param.g *␣
→˓np.sin(p[2]) - 0.5 * param.ca * param.Af * param.rhoa * z[4]**2) + z[4]**2))

Upper/lower bounds for inequalities
model.hu = np.array([0, 0, 0, 0, 0, 0])
model.hl = np.array([-np.inf, -np.inf, -np.inf, -np.inf, -np.inf, -np.inf])

Generating the FORCESPRO NLP solver

To generate a suitable NLP solver for our MPC problem one needs to provide the model and
codeoptions. The model has been populated above and we now specify the desired codeop-
tions and generate the solver by calling FORCES_NLP. The following code-snippets show how
this can be done:

Matlab

Python

% Generate FORCESPRO solver

% Define solver options
codeoptions = getOptions('FORCESNLPsolver');
codeoptions.printlevel = 0;
codeoptions.nlp.compact_code = 1;
codeoptions.legacy_integrators = 1;

% Generate code
FORCES_NLP(model, codeoptions);

Generate FORCESPRO solver

Define solver options
codeoptions = forcespro.CodeOptions("FORCESNLPsolver")
codeoptions.printlevel = 0
codeoptions.nlp.compact_code = 1
codeoptions.legacy_integrators = 1

Generate code
solver = model.generate_solver(codeoptions)

Chapter 11. Examples 273

FORCESPRO User Manual

Calling the solver

Once the solver has been generated it needs to be provided with initial and runtime param-
eters. In this example we are running a single full-horizon snapshot instead of a traditional
rolling-horizon MPC, as follows:

Matlab

Python

function sim = runSimulation(trip, param, model)
% Defines initial and stage-dependent runtime parameters and solves the
% problem

problem.x0 = zeros(model.N*model.nvar,1);
kMax = model.N;
np = model.npar;

%% Initialize system states
if trip.initSpeed < param.vMin || trip.initSpeed > param.vMax

v1 = kmh2ms(param.vMin);
warning('Initial vehicle speed is outside of the speed limits. It will be set␣

→˓to the minimum speed limit at t=0.')
else

v1 = kmh2ms(trip.initSpeed);
end

if trip.initSoC < param.SoCmin || trip.initSoC > param.SoCmax
SoC1 = 0.5;
warning('Initial vehicle state-of-charge is outside of the limits. It will be␣

→˓set to 50% at t=0.')
else

SoC1 = trip.initSoC;
end

% Initialize the problem
% X(1) = [v(1); t(1); SoC(1)]
problem.xinit = [v1; 0; SoC1];

%% Define spatially distributed (i.e. stage-dependent) parameters
% Road speed limits and slope angles
[vMaxRoad, ~, vMinRoad, alpha] = setupRoadParameters(param.vMin, trip);

% Maximum permissible charging time
deltaTchMax = setupChargingTime(param.TchMax, trip);

% Set runtime parameters
problem.all_parameters = zeros(np*model.N,1);
for i = 1:model.N

problem.all_parameters((i-1)*np+1:i*np) = [vMaxRoad(i); vMinRoad(i); alpha(i);
→˓ deltaTchMax(i); trip.Ls*1e3];
end

%% Solve the problem
[solverout,exitflag,info] = FORCESNLPsolver(problem);
sim.exitflag = exitflag;

if exitflag == 1
sim.Z = unpackStruct(solverout,model.nvar);

(continues on next page)

274 Chapter 11. Examples

FORCESPRO User Manual

(continued from previous page)

sim.kMax = kMax;
sim.solvetime = info.solvetime;
sim.iters = info.it;
sim = displayResults(sim);

else
error('Some problem in solver.');

end
end

def runSimulation(trip, param, model, solver):
"""Defines initial and stage-dependent runtime parameters and solves the problem""

→˓"
x0 = np.zeros(model.N * model.nvar)
problem = {"x0": x0}
kMax = model.N
npar = model.npar

Initialize system states

assert trip.initSpeed >= param.vMin or trip.initSpeed <= param.vMax, 'Initial␣
→˓vehicle speed is outside of the speed limits.'
assert trip.initSoC >= param.SoCmin or trip.initSoC <= param.SoCmax, 'Initial␣

→˓vehicle state-of-charge is outside of the limits.'

Initialize the problem
X(1) = [v(1); t(1); SoC(1)]
problem["xinit"] = [kmh2ms(trip.initSpeed), 0, trip.initSoC]

Define spatially distributed (i.e. stage-dependent) parameters
--

Road speed limits and slope angles
vMaxRoad, _, vMinRoad, roadSlope = setupRoadParameters(param.vMin, trip)

Maximum permissible charging time
deltaTchMax = setupChargingTime(param.TchMax, trip);

Set runtime parameters
problem["all_parameters"] = np.zeros(npar * model.N)
for i in range(model.N):

problem["all_parameters"][i*npar:(i + 1)*npar] = np.array([vMaxRoad[i],␣
→˓vMinRoad[i], roadSlope[i], deltaTchMax[i], trip.Ls * 1e3])

Solve the problem

solverout, exitflag, info = solver.solve(problem)

assert exitflag == 1, 'Some problem in solver.'

sim = {"exitflag": exitflag}
sim["Z"] = unpackDict(solverout)
sim["kMax"] = kMax
sim["solvetime"] = info.solvetime
sim["iters"] = info.it
sim = displayResults(sim);

(continues on next page)

Chapter 11. Examples 275

FORCESPRO User Manual

(continued from previous page)

return sim

Results

We consider two trips of different lengths previously described in section Section 11.19.1 with
three benchmark studies conducted for the shorter trip and two studies for the longer trip:

1. a short trip of 50 km with arbitrarily generated road profile, 5 charging stations along the
road, and vehicle’s initial SoC of: a) 75 %; b) 50 %; and c) 25 %.

2. a long trip of 573 km representing a Munich - Cologne trip with actual road profile, ve-
hicle’s initial SoC of 90 %, and: a) 4 charging stations along the road; and b) 2 charging
stations along the road.

Studies 1a - 1c have the same allocation of charging stations, with chargers placed at 8 km,
18 km, 30 km, 40 km and 45 km marks. Furthermore, we allow optional charging for all three
studies. On the other hand, a Munich - Cologne trip 2a considers four chargers placed at
110 km, 150 km, 250 km and 375 km, while trip 2b has two available chargers at 150 km and 375 km.
In contrast to the short trip, here we impose mandatory charging requirement. The most
notable trip metrics for all five studies are showcased in Table 11.1.

Table 11.1: Summary of vehicle performance for different trip
parameters and initial SoC levels.

Trip Distance SoC (t=0) # stations # stops Total time Charge time
1a 50 km 75 % 5 0 33.75 min 0 min
1b 50 km 50 % 5 0 33.92 min 0 min
1c 50 km 25 % 5 2 51.22 min 14.91 min
2a 573 km 90 % 4 4 371.82 min 84.49 min
2b 573 km 90 % 2 2 399.13 min 76.19 min

The simulation results for studies 1a and 1b are depicted in Figure 11.68 and Figure 11.69, re-
spectively. Since the vehicle has sufficently high SoC, the charging is not needed in both
cases. However, in the second trip the vehicle is forced to reduce its velocity significantly be-
low the speed limit in order to preserve energy and complete the trip with sufficient battery
charge, which leads to slightly higher trip time.

A low initial SoC in study 1c forces the vehicle to charge, as shown in Figure 11.70, which leads
to drastically higher trip time. The EV decides to stop at first two charging stops and charge
just enough to complete the trip with the SoC at the lower bound.

The longer trip studies with mandatory charging presented in Figure 11.71 and Figure 11.72
again indicate that the EV will complete the trip at the minimum permissible SoC in order to
minimize the total charging time. The results also suggest that the vehicle will intentionally
reduce speed in order to preserve energy, thus achieving a trade-off between driving and
charging time. The availability of only 2 chargers in study 2b forces the vehicle to drastically
reduce speed midway through the trip, which results in overall trip time increase of 7.35 %,
despite the fact that the total charging time is 9.82 % lower compared to study 2a.

276 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.68: Vehicle performance on a short trip with 5 charging stations and 75 % initial SoC.

Chapter 11. Examples 277

FORCESPRO User Manual

Figure 11.69: Vehicle performance on a short trip with 5 charging stations and 50 % initial SoC.

278 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.70: Vehicle performance on a short trip with 5 charging stations and 25 % initial SoC.

Chapter 11. Examples 279

FORCESPRO User Manual

Figure 11.71: Vehicle performance on a long trip with 4 charging stations and 90 % initial SoC.

280 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.72: Vehicle performance on a long trip with 2 charging stations and 90 % initial SoC.

Chapter 11. Examples 281

FORCESPRO User Manual

11.20 High-level interface: Extended optimal EV charging
and speed profile example using a 2D motor efficiency
map (MATLAB & PYTHON)

• Problem Overview

– Vehicle Dynamics

– Vehicle Energetics

– Bounds

– MPC Formulation

– Model Parameters

• Defining the MPC Problem

– Scaling

– Objective function

– Equality constraints

– Inequality constraints

– Generating the FORCESPRO NLP solver

– Calling the solver

– Results

This example is an updated and more realistic version of Section 11.19, since it uses 2D motor
efficiency map data. In addition to showcasing 2D spline usage, this example also illustrates
how to scale optimization variables, which can be used to increase numerical stability of op-
timization problems in general.

In this example we illustrate the simplicity of the high-level user interface on an optimal elec-
tric vehicle (EV) speed and charging management. The controller plans the car’s speed and
charging trajectory such that the given route is traversed in the shortest time possible, while
simultaneously respecting speed limits as well as vehicle’s and battery’s technical require-
ments. Furthermore, this example illustrates how to use two-dimensional splines as well as
scaling of an optimization problem to make it numerically better conditioned.

11.20.1 Problem Overview

We consider a single EV and a fixed route with given road slopes (i.e. angles) and speed
limits. Optionally, some charging stations could be available at predefined locations along
the road. Vehicle operation is defined by longitudinal vehicle dynamics, powertrain efficiency
and battery capacity. Due to the spatial characteristic of the problem, the formulation is dis-
cretized in space domain. This problem is primarily based on the work in [JiaJibItoGor19_2D]
and [JiaJibGor20_2D].

Vehicle Dynamics

Assuming a sample distance 𝐿s, the longitudinal velocity of the vehicle in space domain at
the discrete step (𝑖+ 1) ∈ ℐ can be determined using the velocity at the previous step (𝑖) and
the difference in kinetic energy between these two consecutive steps, as follows:

1

2
𝑚eq

(︀
𝑣2𝑖+1 − 𝑣2𝑖

)︀
= 𝐿s (𝐹t,𝑖 − 𝐹b,𝑖 − 𝐹r,𝑖)

282 Chapter 11. Examples

FORCESPRO User Manual

where the resistance force is comprised of the following three components:

𝐹r,𝑖 = 𝑐r𝑚v𝑔 cos (𝛼i)⏟ ⏞
rolling resistance

+ 𝑚v𝑔 sin (𝛼i)⏟ ⏞
gravitational force

+
1

2
𝑐a𝐴f𝜌a𝑣

2
𝑖⏟ ⏞

air drag force

The equivalent mass 𝑚eq = 𝑚v(1 + 𝑒I) includes vehicle mass 𝑚v and the effect of all rotational
masses captured by the mass factor 𝑒I. The road slope is represented by the road angle 𝛼.
Variables 𝐹t ≥ 0 and 𝐹b ≥ 0 represent the traction and braking forces on the wheels, which are
generated by the powertrain and mechanical braking system separately (note: regenerative
braking capabilities could be included by allowing the traction power to be negative). The
total driving resistance 𝐹r comprises rolling resistance force, gravitational force and air drag
force (while neglecting the direct impact of wind speed), with 𝑐a being the air drag coefficient,
𝐴f the projected frontal area, 𝜌a the air density, 𝑔 the gravitational acceleration, and 𝑐r the
rolling resistance coefficient.

The vehicle’s velocity dynamics are thus defined by

𝑣𝑖+1 =

√︃
2 (𝐹t,𝑖 − 𝐹b,𝑖 − 𝐹r,𝑖)𝐿s

𝑚eq
+ 𝑣2𝑖

with the assumption that the speed is constant while traversing a single discrete road seg-
ment. Note that the expression below the square root must be strictly positive in order for the
problem to be feasible, as will be discussed later on. In addition to velocity, the time is also a
state variable of the model and can be computed as

𝑡𝑖+1 = 𝑡𝑖 +
𝐿s

𝑣𝑖

Vehicle Energetics

EV’s powertrain efficiency 𝜂(𝑣, 𝐹t, 𝜁) is a function of vehicle’s speed, traction force and battery’s
state-of-charge (SoC), as shown by the efficiency maps depicted in Figure 11.73. Nevertheless,
the impact of SoC on powertrain efficiency is negligible as SoC does not change dramatically
within a short time period if the battery capacity is sufficiently large. Therefore, one could
generate several 2D maps of the form 𝜂(𝑣, 𝐹t), pre-calculated at different SoC levels such that
the most accurate one can be selected according to the current SoC.

For the purpose of this example, we have have generated a single 2D efficiency map depicted
in Figure 11.74 used across all SoC levels.

In Option 1, we fit the 2D efficiency map 𝜂(𝑣, 𝐹t) data as a cubic bivariate spline using Scipy’s
SmoothBivariateSpline routine. In order to utilize Scipy’s fitting routines, a valid Python instal-
lation needs to be present, even if it is called via Matlab. Note that not all Python versions are
compatible with all Matlab versions. For a compatibility list see here (Compatibility).

In principle, we could have utilized any of the provided 2D-spline fitting methods. There is
one that uses CasADi and does not require a valid Python installation. For an extensive list of
the available 2D-spline related methods, see Interpolations 2D (B-splines).

In Option 2, we assume that we have already fitted the 2D-splines (i.e. must be representable
as a B-spline) and therefore, we can provide the coefficients matrix in matrix-indexed form (i.e.
x corresponds to rows and y corresponds to columns) as well as the knots tx and ty directly.

In this example, we can toggle between the two options by setting useScipy. In Matlab, the
example additionally checks that Python as well as the Python package Scipy are installed us-
ing the function validPythonPackages. The Python interface of FORCESPRO already requires
a valid Scipy installation, which is why the check is omitted there.

The two 2D-spline options are generated as follows:

Matlab

Python

Chapter 11. Examples 283

https://ch.mathworks.com/support/requirements/python-compatibility.html

FORCESPRO User Manual

Figure 11.73: 2D efficiency maps of the EV’s powertrain with two different SoC levels taken
from [JiaJibGor20_2D]: (top) 𝜂 with SoC 𝜁 = 10 %; (bottom) 𝜂 with SoC 𝜁 = 90 %.

284 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.74: Generated 2D EV efficiency map.

Chapter 11. Examples 285

FORCESPRO User Manual

function etaMotorSpline = setupMotorEfficiency()
% Returns a cubic bivariate spline representing motor efficiency as a
% function of velocity and traction force.
%
% The data is taken from "Jia, Y.; Jibrin, R.; Goerges, D.: Energy-Optimal
% Adaptive Cruise Control for Electric Vehicles Based on Linear and
% Nonlinear Model Predictive Control. In: IEEE Transactions on Vehicular
% Technology, vol. 69, no. 12, pp. 14173-14187, Dec. 2020."

vMaxMEff = 180; % maximum velocity in the lookup table [km/h]
FtMaxMEff = 5e3; % maximum traction force in the lookup table [N]
vMaxMEff = kmh2ms(vMaxMEff);
vSampleOrig = 0:vMaxMEff/10:vMaxMEff;
FtSampleOrig = 0:FtMaxMEff/5:FtMaxMEff;

% denser grid point selection near the edges with the sharp transitions
vSampleOrig = [vSampleOrig(1), mean(vSampleOrig(1:2)), vSampleOrig(2:end)];
FtSampleOrig = [FtSampleOrig(1), mean(FtSampleOrig(1:2)), FtSampleOrig(2:end)];

% v [m/s] = 0, 2.5, 5, 10, 15, 20, 25, 30, 35, 40, ␣
→˓45, 50

etaSampleOrig = [
0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.

→˓50, 0.50; ... % F [N] = 0
0.50, 0.68, 0.80, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.

→˓83, 0.81; ... % F [N] = 500
0.50, 0.78, 0.81, 0.88, 0.88, 0.88, 0.88, 0.88, 0.85, 0.83, 0.

→˓81, 0.80; ... % F [N] = 1000
0.50, 0.75, 0.81, 0.85, 0.88, 0.85, 0.83, 0.81, 0.78, 0.68, 0.

→˓65, 0.63; ... % F [N] = 2000
0.50, 0.68, 0.80, 0.83, 0.83, 0.81, 0.78, 0.68, 0.65, 0.63, 0.

→˓60, 0.57; ... % F [N] = 3000
0.50, 0.67, 0.78, 0.81, 0.80, 0.78, 0.65, 0.63, 0.60, 0.57, 0.

→˓55, 0.55; ... % F [N] = 4000
0.50, 0.67, 0.75, 0.78, 0.75, 0.65, 0.63, 0.60, 0.57, 0.55, 0.

→˓52, 0.52; ... % F [N] = 5000
];

% spline
useScipy = false;
if useScipy && validPythonPackages()

% Option 1: fitting with Scipy's SmoothBivariateSpline
% convert to 1-D sequences of data points
[vTemp, FtTemp] = meshgrid(vSampleOrig, FtSampleOrig);
vSample = reshape(vTemp.', 1, []);
FtSample = reshape(FtTemp.', 1, []);
etaSample = reshape(etaSampleOrig', [1, numel(etaSampleOrig)]);

s = 0.025;
w = ones(1, length(vSample));
bbox = [min(vSample), max(vSample), min(FtSample), max(FtSample)];
kx = 3;
ky = 3;
rankTol = 1e-8;
scaling = [1e1, 1e3, 1];
etaMotorSpline = ForcesInterpolationFit_SmoothBivariateSpline(vSample,␣

→˓FtSample, etaSample, w, bbox, kx, ky, s, rankTol, scaling);
(continues on next page)

286 Chapter 11. Examples

FORCESPRO User Manual

(continued from previous page)

else
% Option 2: providing 2D-spline coefficients
kx = 3;
ky = 3;
tx = [0, 0, 0, 0, 6.3993742001266, 24.1805094335686, 50, 50, 50, 50];
ty = [0, 0, 0, 0, 760.320551795358, 1503.23831410745, 5000, 5000, 5000, 5000];
coeffs = [0.498727471092637 0.511037494098402 0.524901875945660 0.

→˓548511907792580 0.475607487652389 0.513135686437586
0.498465143841756 0.654046675851965 0.783006359203673 0.

→˓713858506960411 0.676705972846789 0.681154627267599
0.510442836827170 0.854158083414314 1.007125597517271 0.

→˓847628255554849 1.018658592375758 0.878826758082995
0.495093430686428 0.735511289747710 0.857756122056489 0.

→˓863078750613390 0.548595365620131 0.497927393614425
0.510240152112442 0.835399001169469 0.952683895958243 0.

→˓536982511482952 0.563982968586042 0.577416237725016
0.501474795696226 0.773879473939183 0.878143062979889 0.

→˓444534437467682 0.615960539904494 0.508404545245928];
etaMotorSpline = ForcesInterpolation2D(tx, ty, coeffs, kx, ky);

end
end

def setupMotorEfficiency(self):
"""
Returns a cubic bivariate spline representing motor efficiency as a function of␣

→˓velocity and traction force.

The data is taken from "Jia, Y.; Jibrin, R.; Goerges, D.: Energy-Optimal Adaptive␣
→˓Cruise Control for Electric Vehicles Based on Linear and Nonlinear Model Predictive␣
→˓Control. In: IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp. 14173-
→˓14187, Dec. 2020."

"""
vMaxMEff = 180 # maximum velocity in the lookup table [km/h]
FtMaxMEff = 5e3 # maximum traction force in the lookup table [N]
vMaxMEff = self.kmh2ms(vMaxMEff)

vSampleOrig = np.linspace(0, vMaxMEff, 11)
FtSampleOrig = np.linspace(0, FtMaxMEff, 6)

denser grid point selection near the edges with the sharp transitions
vSampleOrig = np.insert(vSampleOrig, 1, np.mean(vSampleOrig[0:2]))
FtSampleOrig = np.insert(FtSampleOrig, 1, np.mean(FtSampleOrig[0:2]))

v [m/s] = 0, 2.5, 5, 10, 15, 20, 25, 30, 35, 40, ␣
→˓ 45, 50

etaSampleOrig = [
[0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50,␣

→˓0.50, 0.50], # F [N] = 0
[0.50, 0.68, 0.80, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85,␣

→˓0.83, 0.81], # F [N] = 500
[0.50, 0.78, 0.81, 0.88, 0.88, 0.88, 0.88, 0.88, 0.85, 0.83,␣

→˓0.81, 0.80], # F [N] = 1000
[0.50, 0.75, 0.81, 0.85, 0.88, 0.85, 0.83, 0.81, 0.78, 0.68,␣

→˓0.65, 0.63], # F [N] = 2000
[0.50, 0.68, 0.80, 0.83, 0.83, 0.81, 0.78, 0.68, 0.65, 0.63,␣

→˓0.60, 0.57], # F [N] = 3000
(continues on next page)

Chapter 11. Examples 287

FORCESPRO User Manual

(continued from previous page)

[0.50, 0.67, 0.78, 0.81, 0.80, 0.78, 0.65, 0.63, 0.60, 0.57,␣
→˓0.55, 0.55], # F [N] = 4000

[0.50, 0.67, 0.75, 0.78, 0.75, 0.65, 0.63, 0.60, 0.57, 0.55,␣
→˓0.52, 0.52] # F [N] = 5000

]
etaSampleOrig = np.array(etaSampleOrig)

spline
useScipy = False
if useScipy:

spline
Option 1: fitting with Scipy's SmoothBivariateSpline
convert to 1d sequences of data points
[vTemp, FtTemp] = np.meshgrid(vSampleOrig, FtSampleOrig)
vSample = vTemp.flatten()
FtSample = FtTemp.flatten()
etaSample = etaSampleOrig.flatten()

s = 0.025
w = np.ones((1, len(vSample)))
bbox = [min(vSample), max(vSample), min(FtSample), max(FtSample)]
kx = 3
ky = 3
eps = 1e-8
scaling = [1e1, 1e3, 1]
etaMotorSpline = forcespro.modelling.InterpolationFit_

→˓SmoothBivariateSpline(x=vSample, y=FtSample, z=etaSample, w=w, bbox=bbox, kx=kx,␣
→˓ky=ky, s=s, eps=eps, scaling=scaling)
else:

Option 2: providing 2D-spline coefficients
kx = 3
ky = 3
tx = np.array([0, 0, 0, 0, 6.3993742001266, 24.1805094335686, 50, 50, 50, 50])
ty = np.array([0, 0, 0, 0, 760.320551795358, 1503.23831410745, 5000, 5000,␣

→˓5000, 5000])
coeffs = np.array([

[0.498727471092637, 0.511037494098402, 0.
→˓524901875945660, 0.548511907792580, 0.475607487652389, 0.513135686437586],

[0.498465143841756, 0.654046675851965, 0.
→˓783006359203673, 0.713858506960411, 0.676705972846789, 0.681154627267599],

[0.510442836827170, 0.854158083414314, 1.
→˓007125597517271, 0.847628255554849, 1.018658592375758, 0.878826758082995],

[0.495093430686428, 0.735511289747710, 0.
→˓857756122056489, 0.863078750613390, 0.548595365620131, 0.497927393614425],

[0.510240152112442, 0.835399001169469, 0.
→˓952683895958243, 0.536982511482952, 0.563982968586042, 0.577416237725016],

[0.501474795696226, 0.773879473939183, 0.
→˓878143062979889, 0.444534437467682, 0.615960539904494, 0.508404545245928]

])

etaMotorSpline = forcespro.modelling.Interpolation2D(tx, ty, coeffs, kx, ky)

return etaMotorSpline

Note that for the fitting you can set a scaling vector for numerically robustifying Scipy’s 2D
spline fitting routine in case the input and output variables have vastly different magnitudes.
The returned spline takes care of scaling such that the inputs to the spline are still the physical

288 Chapter 11. Examples

FORCESPRO User Manual

(unscaled) quantities. This scaling is solely utilized for the spline fitting and is different from
optimization variable scaling, which follows later in this example (see Section 11.20.2).

Assuming a set of predefined charging stops at discrete spatial steps 𝑘 ∈ 𝒦 ⊂ ℐ , we can
include either optional or mandatory charging at each of those stops (to be defined by the
user). Given the implemented powertrain efficiency 𝜂𝑖(𝐹t,𝑖) and potential charging decisions,
the driving energy depletion and charging instances are incorporated into the SoC dynamics
at discrete step 𝑖 as:

𝜁𝑖+1 = 𝜁𝑖 −
𝐹t,𝑖𝐿s

𝜂𝑖𝐸cap
+
𝑃ch,𝑖

𝐸cap
∆𝑡𝑖

where 𝐸cap denotes the battery’s energy capacity, 𝑃ch,𝑖(𝜁𝑖) is a vehicle’s charging power de-
pendent on the SoC, and ∆𝑡𝑖 is the total charging time spent at location 𝑖 ∈ 𝒦. Note that SoC
𝜁 is normalized on an interval [0, 1].

In this example we will particularly focus on the performance of a BMW i3. The charging
profiles 𝑃ch(𝜁) for three production models with different battery capacities are depicted in
Figure 11.75 [Fastned_2D], and can be approximated by a piecewise-affine function as shown
in Figure 11.76.

Figure 11.75: Actual charging profile of BMW i3 as a function of vehicle’s SoC.

The code for computing the 𝑃ch(𝜁) spline function is given below. Note that the Python im-
plementation uses a shape-preserving piecewise-cubic representation instead of piecewise-
linear one.

Matlab

Python

function Pch = setupChargingPower(PchMax)
% Returns piecewise linear representation of charging power as a
% function of vehicle's SoC.
%
% The data is taken from Fastned charging chart available at
% https://support.fastned.nl/hc/en-gb/articles/204784718-Charging-with-a-BMW-i3

(continues on next page)

Chapter 11. Examples 289

FORCESPRO User Manual

Figure 11.76: Implemented piecewise-affine charging profile for the 42 kWh vehicle as a func-
tion of vehicle’s SoC.

(continued from previous page)

%
% NOTE: Python example uses shape-preserving piecewise cubic spline
% approximation ('pchip') which might lead to negligible result
% discrepancies between the two clients when directly compared.

socSample = [0.15, 0.85, 1.0];
PchSample = [0.88, 1, 0.2]*PchMax;
Pch = ForcesInterpolationFit(socSample,PchSample,'linear');

end

def setupChargingPower(self):
"""
Returns shape-preserving piecewise cubic spline representation of charging power␣

→˓as a function of SoC.

The data is taken from Fastned charging chart available at https://support.
→˓fastned.nl/hc/en-gb/articles/204784718-Charging-with-a-BMW-i3

NOTE: Matlab example uses piecewise linear approximation which might lead to␣
→˓negligible result discrepancies between the two clients when directly compared.

"""
socSample = np.array([0.15, 0.85, 1.0])
PchSample = np.array([0.88, 1, 0.2]) * self.PchMax
PchSpline = forcespro.modelling.InterpolationFit(socSample, PchSample, 'pchip')

return PchSpline

290 Chapter 11. Examples

FORCESPRO User Manual

Clearly, the time dynamics would have to be modified as well:

𝑡𝑖+1 = 𝑡𝑖 +
𝐿s

𝑣𝑖
+ ∆𝑡𝑖

with ∆𝑡𝑖 ≈ 0 for all non-charging spatial steps 𝑖 /∈ 𝒦, and 𝑣𝑖 ≈ 𝑣 for all charging spatial steps
𝑖 ∈ 𝒦, with 𝑣 > 0 being th lower speed bound. The latter is not set to zero for two reasons: 1) it
would lead to infeasibility due to 𝑣𝑖 being in the denominator; 2) it reflects the average speed
across the distance 𝐿𝑠, which includes both the driving and the charging instances, and is
therefore greater than zero. This implies that the final vehicle model comprises three states
𝑥 = [𝑣, 𝑡, 𝜁]⊤ and three control inputs 𝑢 = [𝐹t, 𝐹b,∆𝑡]

⊤, with the model dynamics described by

𝑣𝑖+1 =

√︃
2 (𝐹t,𝑖 − 𝐹b,𝑖 − 𝐹r,𝑖)𝐿s

𝑚eq
+ 𝑣2𝑖

𝑡𝑖+1 = 𝑡𝑖 +
𝐿s

𝑣𝑖
+ ∆𝑡𝑖

𝜁𝑖+1 = 𝜁𝑖 −
𝐹t,𝑖𝐿s

𝜂𝑖𝐸cap
+
𝑃ch,𝑖

𝐸cap
∆𝑡𝑖

Additionally, we will include a slack variable 𝑠 ≥ 0 into control vector 𝑢, as it is used to relax the
upper and lower bounds on vehicle’s SoC.

Bounds

In terms of bounds on state variables, we impose upper and lower limits on vehicle’s velocity
and SoC, dictated by the road speed limits and battery specifications:

𝑣 ≤ 𝑣𝑖 ≤ 𝑣𝑖

𝜁 − 𝑠𝑖 ≤ 𝜁𝑖 ≤ 𝜁 + 𝑠𝑖

The upper speed bound 𝑣𝑖 is stage-dependent, dictated by the spatial discretization of the
road speed limits, whereas the lower speed bound 𝑣 is kept constant across all stages. For
charging instances 𝑖 ∈ 𝒦, the upper speed bound can optionally be set to 𝑣𝑖 ≈ 𝑣, indicating
that the vehicle has to reduce speed. The SoC limits 𝜁 and 𝜁 are also stage independent and
implemented as soft bounds.

All control variables are nonnegative and upper bounded with appropriate physical and tech-
nical limits:

0 ≤ ∆𝑡𝑖 ≤ ∆𝑡𝑖

0 ≤ 𝐹t,𝑖 ≤ 𝐹 t,𝑖

0 ≤ 𝐹b,𝑖 ≤ 𝐹 b

Here, ∆𝑡𝑖 denotes maximum permissible charging time and is set to ∆𝑡𝑖 ≈ 0,∀𝑖 /∈ 𝒦, whereas
𝐹 t,𝑖 and 𝐹 b are vehicle’s physical upper bounds on maximum traction and breaking force,
respectively. Note that the traction force limit is comprised of the constant friction limit 𝐹 t

and the hyperbolic traction function of vehicle’s velocity 𝐹 hyp

t,𝑖 (𝑣𝑖), i.e.

𝐹 t,𝑖 = min
(︁
𝐹 t, 𝐹

hyp

t,𝑖 (𝑣𝑖)
)︁

as depicted in Figure 11.77. The actual function implemented in this example is showcased in
Figure 11.78.

The computation of ideal traction hyperbola 𝐹 t,hyp(𝑣) in the cubic spline form is provided be-
low.

Matlab

Python

Chapter 11. Examples 291

FORCESPRO User Manual

Figure 11.77: Maximum permissible traction force as a function of vehicle’s velocity taken from
[xEngineer_2D].

Figure 11.78: Implemented traction force hyperbola as a function of vehicle’s velocity.

292 Chapter 11. Examples

FORCESPRO User Manual

function FtMaxHypSpline = setupTractionForceHyperbola(vMax,FtMax)
% Returns cubic spline representing maximum traction force as a function of
% vehicle's speed
%
% The data is generated based on the technical article provided at
% https://x-engineer.org/need-gears/

vSample = [0.25, 0.4, 0.6, 0.8, 1.0]*vMax;
FtMaxHypSample = [1.0, 0.67, 0.43, 0.32, 0.28]*FtMax;
FtMaxHypSpline = ForcesInterpolationFit(vSample,FtMaxHypSample);

end

def setupTractionForceHyperbola(self):
"""
Returns cubic spline representing motor efficiency as a function of traction␣

→˓force.

The data is generated based on the technical article provided at https://x-
→˓engineer.org/need-gears/

"""
vSample = np.array([0.25, 0.4, 0.6, 0.8, 1.0]) * self.kmh2ms(self.vMax)
FtMaxHypSample = np.array([1.0, 0.67, 0.43, 0.32, 0.28]) * self.FtMax
FtMaxHypSpline = forcespro.modelling.InterpolationFit(vSample, FtMaxHypSample)

return FtMaxHypSpline

MPC Formulation

A complete MPC problem formulation can thus be described as follows:

minimize 𝑡𝑁 +

𝑁−1∑︁
𝑖=0

(︀
𝜔s𝑠𝑖 + 𝜔e𝐹

2
t,𝑖 + 𝜔b𝐹

2
b,𝑖

)︀
subject to 𝑣𝑖+1 =

√︃
2𝐿s

𝑚eq
(𝐹t,𝑖 − 𝐹b,𝑖 − 𝐹r,𝑖) + 𝑣2𝑖

𝑡𝑖+1 = 𝑡𝑖 + 𝐿s𝑣
−1
𝑖 + ∆𝑡𝑖

𝜁𝑖+1 = 𝜁𝑖 −
𝐿s

𝜂𝑖𝐸cap
𝐹t,𝑖 +

𝑃ch,𝑖

𝐸cap
∆𝑡𝑖

𝑣 ≤ 𝑣𝑖 ≤ 𝑣𝑖

𝜁 − 𝑠𝑖 ≤ 𝜁𝑖 ≤ 𝜁 + 𝑠𝑖

0 ≤ ∆𝑡𝑖 ≤ ∆𝑡𝑖

0 ≤ 𝐹t,𝑖 ≤ 𝐹 t,𝑖

0 ≤ 𝐹b,𝑖 ≤ 𝐹 b

0 ≤ 𝑠𝑖

𝑥0 = 𝑥init

with the objective function explained in detail in the subsequent sections.

Chapter 11. Examples 293

FORCESPRO User Manual

Model Parameters

As stated previously, in this example we focus on a highest energy capacity model of BMW
i3, defined by the following parameters obtained from [BMWi3_2D]:

𝑚v = 1345 kg

𝑒I = 1.06

𝐴f = 2.38 m2

𝜌a = 1.206 kg/m3

𝑐a = 0.29

𝑐r = 0.01

𝐹 t = 5 kN

𝐹 b = 10 kN

𝐸cap = 37.9 kWh

𝑃ch = 50 kW

𝑣 = 30 km/h

𝑣 = 180 km/h

𝜁 = 0.1

𝜁 = 0.9

Matlab

Python

function param = defineVehicleParameters(trip)
% Returns vehicle parameters

%% Constant vehicle parameters (not to be changed)
% The data is obtained from "Technical specifications of the BMW i3
% (120 Ah)" valid from 11/2018 and available at
% https://www.press.bmwgroup.com/global/article/detail/T0285608EN/

% Gravitational acceleration (m/s^2)
param.g = 9.81;
% Vehicle mass (kg)
param.mv = 1345;
% Mass factor (-)
param.eI = 1.06;
% Equivalent mass (kg)
param.meq = (1+param.eI)*param.mv;
% Projected frontal area (m^2)
param.Af = 2.38;
% Air density (kg/m^3)
param.rhoa = 1.206;
% Air drag coefficient (-)
param.ca = 0.29;
% Rolling resistance coefficient (-)
param.cr = 0.01;
% Maximum traction force (N)
param.FtMax = 5e3;
% Minimum traction force (N)
param.FtMin = 0;
% param.FtMin = -1.11e3;
% Maximum breaking force (N)

(continues on next page)

294 Chapter 11. Examples

FORCESPRO User Manual

(continued from previous page)

param.FbMax = 10e3;
% Battery's energy capacity (Wh)
% BMW i3 60Ah - 18.2kWh; BMW i3 94Ah - 27.2kWh; BMW i3 120Ah - 37.9kWh
param.Ecap = 37.9e3;
% Maximum permissible charging time (s)
param.TchMax = 3600;
% Charging power (W)
% 7.4 kW on-board charger on IEC Combo AC, optional 50 kW Combo DC
param.PchMax = 50e3;
% Power dissipation factor (-) (adjusted for Munich - Cologne trip in
% order to achieve realistic BMW i3 range of ~260km
if trip.type == 1

param.pf = 1;
else

param.pf = 0.4;
end
% Minimum vehicle velocity (km/h)
param.vMin = 30;
% Maximum vehicle velocity (km/h)
param.vMax = 150;
% Minimum SoC (-)
param.SoCmin = 0.1;
% Maximum SoC (-)
param.SoCmax = 0.9;

%% Variable vehicle parameters
% Motor efficiency (-)
param.eta = setupMotorEfficiency();
% Charging power (W)
param.Pch = setupChargingPower(param.PchMax);
% Traction force hyperbola (upper limit) (N)
param.FtMaxHyp = setupTractionForceHyperbola(kmh2ms(param.vMax), param.FtMax);

end

class VehicleParameters:
"""Constant and variable vehicle parameters (not to be changed)"""
def __init__(self, trip):

Constant vehicle parameters
The data is obtained from "Technical specifications of the BMW i3 (120 Ah)"␣

→˓valid from 11/2018 and available at https://www.press.bmwgroup.com/global/article/
→˓detail/T0285608EN/

Gravitational acceleration (m/s^2)
self.g = 9.81
Vehicle mass (kg)
self.mv = 1345
Mass factor (-)
self.eI = 1.06
Equivalent mass (kg)
self.meq = (1 + self.eI) * self.mv
Projected frontal area (m^2)
self.Af = 2.38
Air density (kg/m^3)
self.rhoa = 1.206
Air drag coefficient (-)

(continues on next page)

Chapter 11. Examples 295

FORCESPRO User Manual

(continued from previous page)

self.ca = 0.29
Rolling resistance coefficient (-)
self.cr = 0.01
Maximum traction force (N)
self.FtMax = 5e3
Minimum traction force (N)
self.FtMin = 0
self.FtMin = -1.11e3
Maximum breaking force (N)
self.FbMax = 10e3
Battery's energy capacity (Wh)
BMW i3 60Ah - 18.2kWh BMW i3 94Ah - 27.2kWh BMW i3 120Ah - 37.9kWh
self.Ecap = 37.9e3
Maximum permissible charging time (s)
self.TchMax = 3600
Charging power (W)
7.4 kW on-board charger on IEC Combo AC, optional 50 kW Combo DC
self.PchMax = 50e3
Power dissipation factor (-) (adjusted for Munich - Cologne trip in order to␣

→˓achieve realistic BMW i3 range of ~260km)
if trip.type == 1:

self.pf = 1
else:

self.pf = 0.4
Minimum vehicle velocity (km/h)
self.vMin = 30
Maximum vehicle velocity (km/h)
self.vMax = 150
Minimum SoC (-)
self.SoCmin = 0.1
Maximum SoC (-)
self.SoCmax = 0.9

Variable vehicle parameters

Motor efficiency (-)
self.eta = self.setupMotorEfficiency()
Charging power (W)
self.Pch = self.setupChargingPower()
Traction force hyperbola (upper limit) (N)
self.FtMaxHyp = self.setupTractionForceHyperbola()

Trip parameters are defined by the user. Here we focus on two benchmark studies: 1) a 50 km
long trip with five EV charging stations and low initial SoC; and 2) an actual 573 km long Munich
- Cologne trip with four EV charging stations and fully charged vehicle.

Matlab

Python

% Trip parameters (provided by the user)
% Note: Accuracy and feasibility of the solution are not guaranteed when
% the `trip.reduceSpeed` flag is disabled due to inherent mixed-integer
% nature of the problem!

% Trip type (0 - long (Munich - Cologne); 1 - short)

(continues on next page)

296 Chapter 11. Examples

FORCESPRO User Manual

(continued from previous page)

trip.type = 1;

if trip.type == 1
% Spatial discretization step (km)
trip.Ls = 1;
% Trip distance (km)
trip.dist = 50;
% EV charging station locations (km)
trip.kmPosCh = [8, 18, 30, 40, 45];
% Force vehicle to reduce speed at charging locations (1 - yes; 0 - no)
trip.reduceSpeed = 0;
% Initial vehicle speed (km/h)
trip.initSpeed = 30;
% Initial SoC [0, 1]
trip.initSoC = 0.35;

elseif trip.type == 0
% Spatial discretization step (km)
trip.Ls = 1;
% Trip distance (km)
trip.dist = 573;
% EV charging station locations (km)
trip.kmPosCh = [110, 150, 250, 375];
% Force vehicle to reduce speed at charging locations (1 - yes; 0 - no)
trip.reduceSpeed = 1;
% Initial vehicle speed (km/h)
trip.initSpeed = 30;
% Initial SoC [0, 1]
trip.initSoC = 0.9;

else
error('Incorrect input: trip type should be either 0 or 1.');

end

class TripParameters:
"""Trip parameters (to be defined by the user)"""
def __init__(self):

Note: Accuracy and feasibility of the solution are not guaranteed when the␣
→˓`trip.reduceSpeed` flag is disabled due to inherent mixed-integer nature of the␣
→˓problem!

Trip type (0 - long (Munich - Cologne) 1 - short)
self.type = 1

assert self.type in [0, 1], 'Incorrect input: trip type should be 0 or 1.'

if self.type == 1:
Spatial discretization step (km)
self.Ls = 1
Trip distance (km)
self.dist = 50
EV charging station locations (km)
self.kmPosCh = np.array([8, 18, 30, 40, 45])
Force vehicle to reduce speed at charging locations
self.reduceSpeed = False
Initial vehicle speed (km/h)
self.initSpeed = 30
Initial SoC [0, 1]

(continues on next page)

Chapter 11. Examples 297

FORCESPRO User Manual

(continued from previous page)

self.initSoC = 0.35
else:

Spatial discretization step (km)
self.Ls = 1
Trip distance (km)
self.dist = 573
EV charging station locations (km)
self.kmPosCh = np.array([110, 150, 250, 375])
Force vehicle to reduce speed at charging locations
self.reduceSpeed = True
Initial vehicle speed (km/h)
self.initSpeed = 30
Initial SoC [0, 1]
self.initSoC = 0.9

You can find the code of this example to try it out for yourself in the examples folder that comes
with your client.

11.20.2 Defining the MPC Problem

Scaling

Since the physical quantities of this example (e.g. SoC or traction force) have vastly differ-
ent magnitudes, it is a numerically sensitive optimization problem. Hence, we utilize scaling
to keep the optimization variables (i.e. scaled down physical quantities) in a similar range
numerically. It is enough to approximately set the scaling vector equal to the order of mag-
nitudes of the physical states and inputs. For this purpose we define a scaling vector, which
will be constant throughout the example:

Matlab

Python

% Assume variable ordering zi = [u{i}; x{i}] for i=1...N
% zi = [slack(i); Ft(i); Fb(i); deltaTch(i); v(i); t(i); SoC(i)]
% pi = [vMax(i); vMin(i); alpha(i); TchMax(i); Ls(k)] #k - iteration No.

%% Scaling Vector
% Scaling factors approximately set equal to order of magnitude of
% the corresponding physical states and inputs
scalingVec = [1, 1e4, 1e4, 1e4, 1e2, 1e4, 1].';

"""
Assume variable ordering zi = [u{i}, x{i}] for i=1...N
zi = [slack{i}, Ft{i}, Fb{i}, deltaTch{i}, v{i}, t{i}, SoC{i}]
pi = [vMax{i}, vMin{i}, alpha{i}, TchMax{i}, Ls{k}] #k - iteration No.
"""

Scaling
Scaling factors approximately set equal to order of magnitude of
the corresponding physical states and inputs
scalingVec = np.array([1, 1e4, 1e4, 1e4, 1e2, 1e4, 1])

298 Chapter 11. Examples

FORCESPRO User Manual

Objective function

The primary goal is to minimize the total driving time, i.e. minimize terminal variable 𝑡𝑁 at
the last stage 𝑖 = 𝑁 :

𝑓(𝑧, 𝑝𝑁) = 𝑧(6)

In addition, we want to minimize the stage cost associated with slack variable 𝑠,∀𝑖 ∈ ℐ :

𝑓(𝑧, 𝑝𝑖) = 𝜔s𝑧(1)

where 𝜔s is an appropriately high weight factor.

Optionally, one could opt for ensuring comfortable driving operation and pursuing energy
economy improvements. In such case, additional terms could be included in the stage cost
function, e.g.

𝑓(𝑧, 𝑝𝑖) = 𝜔s𝑧(1) + 𝜔e𝑧(2)2 + 𝜔b𝑧(3)2

The second term imposes a penalty on consumed energy during driving by reducing the
applied traction force, whereas the third term minimizes the total braking force. The corre-
sponding weight factors 𝜔e and 𝜔b provide a trade-off between different objectives. Further-
more, one could also penalize jerking, i.e. a change in the traction force between consecutive
steps, using another slack variable.

In the code, we scale the optimization variables back to their physical values before multiply-
ing them with the cost weightings. At the end, we scale down the entire cost down again by a
scalar costScaling factor in order to have limited cost magnitudes. We could have also omit-
ted the scaling back up to the physical quantities in the cost function by choosing different
cost weighting factors. The cost functions are coded in MATLAB and Python as follows:

Matlab

Python

% Objective function
costScaling = 1e3;
model.objective = @(z) objective(z, scalingVec, costScaling);
model.objectiveN = @(z) objectiveN(z, scalingVec, costScaling);

function [stageCost] = objective(z, scalingVec, costScaling)
z = z.*scalingVec;

R = [1e-7, 0;
0, 1e-6];

slackCostFactor = 1e6;
stageCost = slackCostFactor*z(1) + [z(2);z(3)]'*R*[z(2);z(3)];

stageCost = stageCost/costScaling;
end

function [terminalCost] = objectiveN(z, scalingVec, costScaling)
z = z.*scalingVec;

terminalCost = z(6);

terminalCost = terminalCost/costScaling;
end

Chapter 11. Examples 299

FORCESPRO User Manual

Objective function
costScaling = 1e3
model.objective = lambda z: objective(z, scalingVec, costScaling)
model.objectiveN = lambda z: objectiveN(z, scalingVec, costScaling)

def objective(z, scalingVec, costScaling):
z *= scalingVec

R = np.diag([1e-7, 1e-6])
slackCostFactor = 1e6

stageCost = slackCostFactor * z[0] + casadi.horzcat(z[1], z[2]) @ R @ casadi.
→˓vertcat(z[1], z[2])

stageCost /= costScaling

return stageCost

def objectiveN(z, scalingVec, costScaling):
z *= scalingVec

terminalCost = z[5]

terminalCost /= costScaling

return terminalCost

Equality constraints

The equality constraints model.eq in this example results from the vehicle’s dynamics and en-
ergetics model given above. Importantly, we have to scale back up the optimization variables
to the physical quantities at the very beginning of the function. With the physical quantities
we calculate the dynamics equation as usual and then we scale back down the next state (or
state derivative in case of continuous dynamics). Note that we are using the fitted 2D-spline
in the dynamics equation for the SoC. The code is implemented as follows:

Matlab

Python

% Problem dimensions
nx = 3;
nu = 4;
np = 5;
nh = 7;

model.N = round(trip.dist/trip.Ls); % horizon length
if mod(model.N,1)~=0

error('Incorrect input: trip distance should be an exact multiple of the spatial␣
→˓discretization step.');
end
model.nvar = nx + nu; % number of variables
model.neq = nx; % number of equality constraints
model.nh = nh; % number of inequality constraints
model.npar = np; % number of runtime parameters

(continues on next page)

300 Chapter 11. Examples

FORCESPRO User Manual

(continued from previous page)

% Dynamics, i.e. equality constraints
model.eq = @(z,p) dynamics(z, p, param, scalingVec, nu, nx);

model.E = [zeros(nx,nu),eye(nx)];

% Initial and final conditions
model.xinitidx = nu+1:nu+nx;

function [xNext] = dynamics(z, p, param, scalingVec, nu, nx)
z = z.*scalingVec;

xNext = [sqrt(ForcesMax(2*p(5)/param.meq*(z(2) - z(3) - param.cr*param.mv*param.
→˓g*cos(p(3)) - param.mv*param.g*sin(p(3)) - 0.5*param.ca*param.Af*param.rhoa*z(5)^2)␣
→˓+ z(5)^2, 1e-5));

z(6) + p(5)/z(5) + z(4);
z(7) - param.pf*p(5)*z(2)/(3600*param.eta(z(5), z(2))*param.Ecap) + param.

→˓Pch(z(7))*z(4)/(3600*param.Ecap)];

xNext = xNext./scalingVec(nu+1:nu+nx);
end

Problem dimensions
nx = 3
nu = 4
npar = 5
nh = 7

model = forcespro.nlp.SymbolicModel()
model.N = round(trip.dist / trip.Ls); # horizon length
assert model.N % 1 == 0, 'Incorrect input: trip distance should be an exact multiple␣
→˓of the spatial discretization step'
model.nvar = nx + nu; # number of variables
model.neq = nx; # number of equality constraints
model.nh = nh; # number of inequality constraints
model.npar = npar; # number of runtime parameters

Dynamics, i.e. equality constraints
model.eq = lambda z, p: dynamics(z, p, param, scalingVec, nx, nu)

model.E = np.concatenate([np.zeros((nx, nu)), np.eye(nx)], axis=1)

Initial and final conditions
model.xinitidx = np.arange(nu, nu + nx);

def dynamics(z, p, param, scalingVec, nx, nu):
z *= scalingVec

xNext = casadi.vertcat(np.sqrt(forcespro.modelling.smooth_max(2 * p[4] / param.
→˓meq * (z[1] - z[2] - param.cr * param.mv * param.g * np.cos(p[2]) - param.mv *␣
→˓param.g * np.sin(p[2]) - 0.5 * param.ca * param.Af * param.rhoa * z[4]**2) +␣
→˓z[4]**2, 1e-5)),

z[5] + p[4] / z[4] + z[3],
z[6] - param.pf * p[4] * z[1] / (3600 * param.eta(z[4],␣

→˓z[1])* param.Ecap) + param.Pch(z[6]) * z[3] / (3600 * param.Ecap))

(continues on next page)

Chapter 11. Examples 301

FORCESPRO User Manual

(continued from previous page)

xNext /= scalingVec[nu:nu+nx]

return xNext

The use of smooth maximum approximation (see section Section 19.3) ensures a positive
square root term and thus a feasible solution.

Inequality constraints

Since our optimization variables are scaled, it is crucial to scale down the physical box-bound
constraints.

The nonlinear inequality constraints model.ineq comprise all decision variable bounds de-
scribed previously. For the nonlinear inequality constraints, we scale back up the optimization
variables to physical quantities and define the physical constraints as usual. Optionally, we
scale down again the entire nonlinear constraints by their approximate order of magnitudes
for additional numerical stability. We keep in mind that if the bounds of the nonlinear in-
equality constraints model.hl and model.hu were not -inf or 0, they would have been affected
by the scaling as well. For purposes of model feasibility, two additional trivial constraints per-
taining to the vehicle velocity’s square root term are included in the model, as shown in the
code-snippets.

Matlab

Python

% Inequality constraints
% Upper/lower variable bounds lb <= z <= ub
% inputs | states
% slack Ft Fb Tch v t ␣
→˓ SoC
model.lb = [0, param.FtMin, 0., 0., kmh2ms(param.vMin), 0.,
→˓ 0.]./scalingVec.';
model.ub = [0.1, param.FtMax, param.FbMax, param.TchMax, kmh2ms(param.vMax), ␣
→˓+inf, 1.]./scalingVec.';

% Nonlinear inequalities hl <= h(z,p) <= hu
model.ineq = @(z,p) ineq(z, p, param, scalingVec);

% Upper/lower bounds for inequalities
model.hu = [0, 0, 0, 0, 0, 0];
model.hl = [-inf, -inf, -inf, -inf, -inf, -inf];

function [h] = ineq(z, p, param, scalingVec)
z = z.*scalingVec;

h = [z(2) - param.FtMaxHyp(z(5));
z(4) - p(4);
z(7) - param.SoCmax - z(1);
param.SoCmin - z(7) - z(1);
2*p(5)/param.meq*(z(2) - z(3) - param.cr*param.mv*param.g*cos(p(3)) - param.

→˓mv*param.g*sin(p(3)) - 0.5*param.ca*param.Af*param.rhoa*z(5)^2) + z(5)^2 -␣
→˓kmh2ms(ForcesMax((1-z(4))*p(1), param.vMin+1))^2;

kmh2ms(p(2))^2 - (2*p(5)/param.meq*(z(2) - z(3) - param.cr*param.mv*param.
→˓g*cos(p(3)) - param.mv*param.g*sin(p(3)) - 0.5*param.ca*param.Af*param.rhoa*z(5)^2)␣
→˓+ z(5)^2)];

(continues on next page)

302 Chapter 11. Examples

FORCESPRO User Manual

(continued from previous page)

h = h./[scalingVec(2); scalingVec(4); scalingVec(7); scalingVec(7); scalingVec(5);
→˓ scalingVec(5)];
end

Inequality constraints
Upper/lower variable bounds lb <= z <= ub
inputs | ␣
→˓states
slack Ft Fb Tch v ␣
→˓ t SoC
model.lb = np.array([0., param.FtMin, 0., 0., kmh2ms(param.vMin),␣
→˓ 0., 0.]) / scalingVec
model.ub = np.array([0.1, param.FtMax, param.FbMax, param.TchMax, kmh2ms(param.vMax),␣
→˓ np.inf, 1.]) / scalingVec

Nonlinear inequalities hl <= h(z,p) <= hu
model.ineq = lambda z,p: ineq(z, p, param, scalingVec)

Upper/lower bounds for inequalities
model.hu = np.array([0, 0, 0, 0, 0, 0])
model.hl = np.array([-np.inf, -np.inf, -np.inf, -np.inf, -np.inf, -np.inf])

def ineq(z, p, param, scalingVec):
z *= scalingVec

h = casadi.vertcat(z[1] - param.FtMaxHyp(z[4]),
z[3] - p[3],
z[6] - param.SoCmax - z[0],
param.SoCmin - z[6] - z[0],
2 * p[4] / param.meq * (z[1] - z[2] - param.cr * param.mv *␣

→˓param.g * np.cos(p[2]) - param.mv * param.g * np.sin(p[2]) - 0.5 * param.ca * param.
→˓Af * param.rhoa * z[4]**2) + z[4]**2 - kmh2ms(forcespro.modelling.smooth_max((1 -␣
→˓z[3]) * p[0], param.vMin + 1))**2,

kmh2ms(p[1])**2 - (2 * p[4] / param.meq * (z[1] - z[2] - param.
→˓cr * param.mv * param.g * np.cos(p[2]) - param.mv * param.g * np.sin(p[2]) - 0.5 *␣
→˓param.ca * param.Af * param.rhoa * z[4]**2) + z[4]**2))

h /= np.array([scalingVec[1], scalingVec[3], scalingVec[6], scalingVec[6],␣
→˓scalingVec[4], scalingVec[4]])

return h

Generating the FORCESPRO NLP solver

To generate a suitable NLP solver for our MPC problem one needs to provide the model and
codeoptions. The model has been populated above and we now specify the desired codeop-
tions and generate the solver by calling FORCES_NLP. Importantly, in order to use the pro-
vided 2D-spline functionality, the automatic differentiation tool must be CasADi. Further-
more, the CasADi 2D-splines require the usage of MX CasADi-variables, which can be set in
the codeoptions. The following code-snippets show how this can be done:

Matlab

Python

Chapter 11. Examples 303

FORCESPRO User Manual

% Generate FORCESPRO solver

% Define solver options
codeoptions = getOptions('FORCESNLPsolver');
codeoptions.printlevel = 0;
codeoptions.nlp.compact_code = 1;
codeoptions.legacy_integrators = 1;
codeoptions.maxit = 300

% 2D-splines require the MX CasADi variables
codeoptions.nlp.ad_expression_class = 'MX'

% Generate code
FORCES_NLP(model, codeoptions);

Generate FORCESPRO solver

Define solver options
codeoptions = forcespro.CodeOptions("FORCESNLPsolver")
codeoptions.printlevel = 0
codeoptions.nlp.compact_code = 1
codeoptions.legacy_integrators = 1
codeoptions.maxit = 300

2D-splines require the MX CasADi variables
codeoptions.nlp.ad_expression_class = "MX"

Generate code
solver = model.generate_solver(codeoptions)

Calling the solver

Once the solver has been generated it needs to be provided with initial and runtime param-
eters. Importantly, we need to scale down the physical initial state and scale back up the
FORCESPRO solution to the physical quantities. If a physically valid trajectory would be uti-
lized as an initial guess, we would need to scale the initial guess down as well. Here we use
0 as initial guess for simplicity’s sake. In this example we are running a single full-horizon
snapshot instead of a traditional rolling-horizon MPC, as follows:

Matlab

Python

function sim = runSimulation(trip, param, model)
% Defines initial and stage-dependent runtime parameters and solves the
% problem

problem.x0 = zeros(model.N*model.nvar,1);
kMax = model.N;
np = model.npar;

%% Initialize system states
if trip.initSpeed < param.vMin || trip.initSpeed > param.vMax

v1 = kmh2ms(param.vMin);
warning('Initial vehicle speed is outside of the speed limits. It will be set␣

→˓to the minimum speed limit at t=0.')

(continues on next page)

304 Chapter 11. Examples

FORCESPRO User Manual

(continued from previous page)

else
v1 = kmh2ms(trip.initSpeed);

end

if trip.initSoC < param.SoCmin || trip.initSoC > param.SoCmax
SoC1 = 0.5;
warning('Initial vehicle state-of-charge is outside of the limits. It will be␣

→˓set to 50% at t=0.')
else

SoC1 = trip.initSoC;
end

% Initialize the problem
% X(1) = [v(1); t(1); SoC(1)]
problem.xinit = [v1; 0; SoC1]./scalingVec(nu+1:nu+nx);

%% Define spatially distributed (i.e. stage-dependent) parameters
% Road speed limits and slope angles
[vMaxRoad, ~, vMinRoad, alpha] = setupRoadParameters(param.vMin, trip);

% Maximum permissible charging time
deltaTchMax = setupChargingTime(param.TchMax, trip);

% Set runtime parameters
problem.all_parameters = zeros(np*model.N,1);
for i = 1:model.N

problem.all_parameters((i-1)*np+1:i*np) = [vMaxRoad(i); vMinRoad(i); alpha(i);
→˓ deltaTchMax(i); trip.Ls*1e3];
end

%% Solve the problem
[solverout,exitflag,info] = FORCESNLPsolver(problem);
sim.exitflag = exitflag;

if exitflag == 1
sim.Z = unpackStruct(solverout,model.nvar).*scalingVec.';
sim.kMax = kMax;
sim.solvetime = info.solvetime;
sim.iters = info.it;
sim = displayResults(sim);

else
error('Some problem in solver.');

end
end

def runSimulation(trip, param, model, solver):
"""Defines initial and stage-dependent runtime parameters and solves the problem""

→˓"
x0 = np.zeros(model.N * model.nvar)
problem = {"x0": x0}
kMax = model.N
npar = model.npar

Initialize system states

(continues on next page)

Chapter 11. Examples 305

FORCESPRO User Manual

(continued from previous page)

assert trip.initSpeed >= param.vMin or trip.initSpeed <= param.vMax, 'Initial␣
→˓vehicle speed is outside of the speed limits.'
assert trip.initSoC >= param.SoCmin or trip.initSoC <= param.SoCmax, 'Initial␣

→˓vehicle state-of-charge is outside of the limits.'

Initialize the problem
X(1) = [v(1); t(1); SoC(1)]
problem["xinit"] = [kmh2ms(trip.initSpeed), 0, trip.initSoC] /␣

→˓scalingVec[nu:nu+nx]

Define spatially distributed (i.e. stage-dependent) parameters
--

Road speed limits and slope angles
vMaxRoad, _, vMinRoad, roadSlope = setupRoadParameters(param.vMin, trip)

Maximum permissible charging time
deltaTchMax = setupChargingTime(param.TchMax, trip);

Set runtime parameters
problem["all_parameters"] = np.zeros(npar * model.N)
for i in range(model.N):

problem["all_parameters"][i*npar:(i + 1)*npar] = np.array([vMaxRoad[i],␣
→˓vMinRoad[i], roadSlope[i], deltaTchMax[i], trip.Ls * 1e3])

Solve the problem

solverout, exitflag, info = solver.solve(problem)

assert exitflag == 1, 'Some problem in solver.'

sim = {"exitflag": exitflag}
sim["Z"] = unpackDict(solverout) * scalingVec
sim["kMax"] = kMax
sim["solvetime"] = info.solvetime
sim["iters"] = info.it
sim = displayResults(sim);

return sim

Results

We consider two trips of different lengths previously described in section Section 11.20.1 with
three benchmark studies conducted for the shorter trip and two studies for the longer trip:

1. a short trip of 50 km with arbitrarily generated road profile, 5 charging stations along the
road, and vehicle’s initial SoC of: a) 75 %; b) 50 %; and c) 25 %.

2. a long trip of 573 km representing a Munich - Cologne trip with actual road profile, ve-
hicle’s initial SoC of 90 %, and: a) 4 charging stations along the road; and b) 2 charging
stations along the road.

Studies 1a - 1c have the same allocation of charging stations, with chargers placed at 8 km,
18 km, 30 km, 40 km and 45 km marks. Furthermore, we allow optional charging for all three
studies. On the other hand, a Munich - Cologne trip 2a considers four chargers placed at
110 km, 150 km, 250 km and 375 km, while trip 2b has two available chargers at 150 km and 375 km.

306 Chapter 11. Examples

FORCESPRO User Manual

In contrast to the short trip, here we impose mandatory charging requirement. The most
notable trip metrics for all five studies are showcased in Table 11.2.

Table 11.2: Summary of vehicle performance for different trip
parameters and initial SoC levels.

Trip Distance SoC (t=0) # stations # stops Total time Charge time
1a 50 km 75 % 5 0 33.75 min 0 min
1b 50 km 50 % 5 1 37.75 min 2.36 min
1c 50 km 25 % 5 3 53.56 min 15.21 min
2a 573 km 90 % 4 4 351.34 min 71.79 min
2b 573 km 90 % 2 2 354.30 min 72.02 min

The simulation results for studies 1a and 1b are depicted in Figure 11.79 and Figure 11.80, re-
spectively. Since the vehicle has sufficently high SoC, no charging is needed in first case and
only a tiny amount of charging is required in the latter case. However, in the second trip the
vehicle is forced to reduce its velocity below the speed limit in order to preserve energy and
complete the trip with sufficient battery charge, which leads to a higher trip time.

A low initial SoC in study 1c forces the vehicle to charge, as shown in Figure 11.81, which leads
to drastically higher trip time. The EV decides to stop at first three charging stops and charge
just enough to complete the trip with the SoC at the lower bound.

Figure 11.79: Vehicle performance on a short trip with 5 charging stations and 75 % initial SoC.

The longer trip studies with mandatory charging presented in Figure 11.82 and Figure 11.83
again indicate that the EV will complete the trip at the minimum permissible SoC in order to
minimize the total charging time. The results also suggest that the vehicle will intentionally
reduce speed in order to preserve energy, thus achieving a trade-off between driving and
charging time. The availability of only 2 chargers in study 2b forces the vehicle to drastically
reduce speed midway through the trip.

Chapter 11. Examples 307

FORCESPRO User Manual

Figure 11.80: Vehicle performance on a short trip with 5 charging stations and 50 % initial SoC.

Figure 11.81: Vehicle performance on a short trip with 5 charging stations and 25 % initial SoC.

308 Chapter 11. Examples

FORCESPRO User Manual

Figure 11.82: Vehicle performance on a long trip with 4 charging stations and 90 % initial SoC.

Figure 11.83: Vehicle performance on a long trip with 2 charging stations and 90 % initial SoC.

Chapter 11. Examples 309

FORCESPRO User Manual

310 Chapter 11. Examples

FORCESPRO User Manual

Chapter 12

Parametric problems

• Defining parameters

• Example

• Parametric Quadratic Constraints

• Diagonal Hessians

• Sparse Parameters

• Special Parameters

• Python: Column vs Row Major Storage Format

Parameters (or real-time data) are a key concept in FORCESPRO. Usually at least one vector in
an embedded optimization problem will change between two calls to the solver. In MPC, the
initial state changes usually between two sampling times. But other data can change too, for
example because you are working with linearizations of non-linear dynamics, or because the
cost matrices of a quadratic objective function are tuned online. The following API is available
when using the low-level interface only and cannot be used with the high-level interface.

12.1 Defining parameters

FORCESPRO gives you full control over the parametrization of the optimization problem: You
can define all data matrices and vectors to be parametric. To define a parameter in MATLAB,
use the function

parameter = newParam(name, maps2stage, maps2data);

and in Python, use

stages.newParam(name, maps2stage, maps2data)

where name is the parameter name, which you need to be set before calling the solver. The
vector of indices maps2stage defines to which stages the parameters maps. The last argument
maps2data has to be one of the following strings

311

FORCESPRO User Manual

Table 12.1: Possible string values for argument maps2data
Cost function Equality constraints Inequality constraints
'cost.H' 'eq.c' 'ineq.b.lb'
'cost.f' 'eq.C' 'ineq.b.ub'

'eq.D' 'ineq.p.A'
'ineq.p.b'
'ineq.q.Q'
'ineq.q.l'
'ineq.q.r'

From FORCESPRO 1.8.0, the user is allowed to provide a parameter for all problem stages at
once. All stage parameters are then stacked into one vector or matrix before getting passed
to the solver at runtime. FORCESPRO is notified about this by having

maps2stage = [];

For instance, in order to provide a parametric linear cost across all stages, one should use the
following code at codegen.

parameter = newParam('linear_stage_cost', [], 'cost.f');

At runtime, the user is expected to provide the linear stage cost as follows.

problem.linear_stage_cost = repmat(rand(problem.nvar, 1), problem.horzLength, 1);

where problem.horzLength is the horizon length and problem.nvar is the number of stage vari-
ables.

Note: The stacked parameters feature is only available in MATLAB from FORCESPRO ‘1.8.0’.

12.2 Example

To define the linear term of the cost of stages 1 to 5 as a parameter, use the following com-
mand in MATLAB

parameter1 = newParam('linear_cost', 1:5, 'cost.f');

and in Python, use

stages.newParam('linear_cost', range(1, 6), 'cost.f')

Note that this will generate only one parameter and the same runtime data will be mapped
to stages 1 to 5. If the runtime data should be different for each stage one would have to
generate five differents in this case.

We can also have a second parameter. For instance, the right handside of the first equality
constraints, which is a very common caes in MPC. In MATLAB

parameter2 = newParam('RHS_first_equality_constraint', 1, 'eq.c');

In Python

stages.newParam('RHS_first_equality_constraint', [1], 'eq.c')

312 Chapter 12. Parametric problems

FORCESPRO User Manual

12.3 Parametric Quadratic Constraints

As there may be multiple quadratic constraints for every stage, one needs to specify which
ones are to be parametric. One can use a fourth argument in the newParam call, as shown
below. In MATLAB

parameter = newParam(name, maps2stage, maps2data, idxWithinStage);

In Python

stages.newParam(name, maps2stage, maps2data, idxWithinStage)

where idxWithinStage denotes the index of the quadratic constraints to which this parame-
ters applies.

12.4 Diagonal Hessians

In case your parametric Hessian is diagonal, you should use the fourth argument of newParam
as shown below. In MATLAB

parameter1 = newParam('Hessians', 1:5, 'cost.H', 'diag');

In Python

stages.newParam('Hessians', range(1,6), 'cost.H', 'diag')

The FORCESPRO solver will then only expect a vector as a parameter. The 'diag' keyword is
currently only valid for hessian matrices related to the objective function.

12.5 Sparse Parameters

If your parameters are not diagonal but they have a sparse structure that can be exploited for
performance, you can use the fourth and fifth arguments of newParam to let FORCESPRO
know about the sparsity pattern. In MATLAB

parameter2 = newParam('Ai', 1:5, 'ineq.p.A', 'sparse', [zeros(5, 6) rand(5, 2)]);

In Python

stages.newParam('Ai',range(1,6),'ineq.p.A','sparse',numpy.hstack((numpy.zeros(5,6),
→˓random.random((5,2)))))

The fifth argument is used to let FORCESPRO know about the location of the non-zero el-
ements. When a solver is generated using sparse parameters it is the responsibility of the
user to pass on parameters with the correct sparsity pattern to the solver. There will be no
warnings thrown at runtime.

Sparse parameter values have to be passed as a column vector of nonzero elements, i.e. to
assign the values of matrix B to sparse parameter Ci one should use the following: In MATLAB

problem.Ci = nonzeros(sparse(B));

In Python

Chapter 12. Parametric problems 313

FORCESPRO User Manual

problem.Ci = B[numpy.nonzeros(B)]

Note that parameters with a general sparsity structure defined by the fifth argument are cur-
rently only supported for polytopic constraints. For the equality constraint matrices, only the
structure [0 A], where A is assumed to be dense, is currently supported.

12.6 Special Parameters

To prevent having to transfer entire matrices for parameters with few changing elements at
runtime, one can specify a sixth argument to let FORCESPRO know about the location of the
elements that will be supplied at runtime. In MATLAB

parameter2 = newParam('Ci', 1:5,'eq.C','sparse',Cstruc,Cvar)

In Python

stages.newParam('Ci',range(1,6),'eq.C','sparse',Cstruc,Cvar)

Note that in this case the constant values will be taken from the data supplied in the field
Cstruc. At runtime the user only has to supply a column vector including the time-varying
elements marked in the field Cvar. The ordering should be column major.

12.7 Python: Column vs Row Major Storage Format

Unlike Matlab, numpy stores arrays by default in row-major format internally. Since FORCE-
SPRO expects the parameters in column major storage format, a conversion is necessary.
This conversion is automatically performed by the Python interface when the solver is called.
To avoid the conversion every time the solver is called, you should use the following way of
creating the arrays storing parameters:

a = array([1, 2, 3, 4, 5, 6])
b = a.reshape(2,3,order='F')

The above code reshapes the array into a (2,3) Matrix stored in column major (Fortran) format.

314 Chapter 12. Parametric problems

FORCESPRO User Manual

Chapter 13

Code Deployment

13.1 Main Targets

• High-level interface

• Low-level interface

• Y2F interface

• C interface: memory allocations

– Internal memory

– External memory

– Code options related to solver memory

– Obtaining memory size

Important: When deploying to a target hardware platform, the library included in the
lib_target directory of the generated solver should be used instead of the library in the lib
directory.

Main targets include:

• x86 platforms

• x86_64 platforms

• 32bit ARM-Cortex-A platforms

• 32bit ARM-Cortex-M platforms (no shared libraries)

• 64bit ARM-Cortex-A platforms (AARCH64 toolchain)

• 64bit ARM-Cortex-A platforms (Integrity toolchain)

• NVIDIA platforms with ARM-Cortex-A processors

• PowerPC platforms with GCC compiler

• National Instruments compactRIO platforms with NILRT GCC compiler (Linux RTOS)

You can check here to find the correct naming option for each platform.

315

FORCESPRO User Manual

13.1.1 High-level interface

The steps to deploy and simulate a FORCESPRO controller on most targets are detailed be-
low.

1. In the High-level interface example BasicExample.m set the code generation options:

Matlab

Python

codeoptions.platform = '<platform_name>'; % to specify the platform
codeoptions.printlevel = 0; % optional, on some platforms printing is not supported
codeoptions.cleanup = 0; % to keep necessary files for target compile

codeoptions.platform = '<platform_name>' # to specify the platform
codeoptions.printlevel = 0 # optional, on some platforms printing is not supported
codeoptions.cleanup = 0 # to keep necessary files for target compile

and then generate the code for your solver (henceforth referred to as “FORCESNLPsolver”,
placed in the folder “BasicExample”) using the high-level interface.

2. Additionally to your solver you will receive the following files generated by CasADi:

For a MATLAB solver generation the following files will be generated:

• FORCESNLPsolver_adtool2forces.c

• FORCESNLPsolver_casadi.c

• FORCESNLPsolver_casadi.h

and for a Python solver generation the following files will be generated:

• FORCESNLPsolver_interface.c

• FORCESNLPsolver_model.c

• FORCESNLPsolver_model.h

In further steps we’ll be using the MATLAB naming of the files but their use should be equiv-
alent.

3. For most target platforms you will receive the following compiled files:

• For MinGW/Linux/MacOS:

– a static library file libFORCESNLPsolver.a inside the folder lib_target

– a shared library file libFORCESNLPsolver.so inside the folder lib_target

• For Windows:

– a static library file FORCESNLPsolver_static.lib inside the folder lib_target

– a dynamic library file FORCESNLPsolver.dll with its definition file for compilation
FORCESNLPsolver.lib inside the folder lib_target

You need only one of those to build the solver.

Important: The shared library and the dynamic library if used for building need to be present
during runtime as well.

4. Create an interface to call the solver and perform a simulation/test.

You can find a C interface for this example to try it out for yourself in the examples folder that
comes with your client.

316 Chapter 13. Code Deployment

FORCESPRO User Manual

Refer to section C interface: memory allocations for more information on controlling memory
allocation within the C interface.

5. Copy in the target platform:

• The FORCESNLPsolver folder

• The source files from step 2

• The interface from step 4

6. Compile the solver. The compilation command would be (supposing you are in the
directory which contains the FORCESNLPsolver folder):

<Compiler_exec> HighLevel_BasicExample.c FORCESNLPsolver_adtool2forces.c␣
→˓FORCESNLPsolver_casadi.c <compiled_solver> <additional_libs>

Where:

• <Compiler_exec> would be the compiler used in the target

• <compiled_solver> would be one of the compiled files of step 3

• <additional_libs> would be possible libraries that need to be linked to resolve existing
dependencies.

– For Linux/MacOS it’s usually necessary to link the math library (-lm)

– For Windows you usually need to link the iphlpapi.lib library (it’s distributed with
the Intel Compiler, MinGW as well as Matlab) and unless you’re using MinGW some
additional intel libraries (those are included in the FORCESPRO client under the
folder libs_Intel – if missing they are downloaded after code generation)

Chapter 13. Code Deployment 317

FORCESPRO User Manual

13.1.2 Low-level interface

The steps to deploy and simulate a FORCESPRO controller on most targets are detailed be-
low.

1. In the Low-level interface example BasicExample.m set the code generation options:

Matlab

Python

codeoptions.platform = '<platform_name>'; % to specify the platform
codeoptions.printlevel = 0; % optional, on some platforms printing is not supported

codeoptions.platform = '<platform_name>' # to specify the platform
codeoptions.printlevel = 0 # optional, on some platforms printing is not supported

and then generate the code for your solver (henceforth referred to as “FORCESNLPsolver”,
placed in the folder “BasicExample”) using the low-level interface.

2. For most target platforms you will receive the following compiled files:

• For MinGW/Linux/MacOS:

– a static library file libFORCESNLPsolver.a inside the folder lib_target

– a shared library file libFORCESNLPsolver.so inside the folder lib_target

• For Windows:

– a static library file FORCESNLPsolver_static.lib inside the folder lib_target

– a dynamic library file FORCESNLPsolver.dll with its definition file for compilation
FORCESNLPsolver.lib inside the folder lib_target

You need only one of those to build the solver.

Important: The shared library and the dynamic library if used for building need to be present
during runtime as well.

3. Create an interface to call the solver and perform a simulation/test.

You can find a C interface for this example to try it out for yourself in the examples folder that
comes with your client.

4. Copy in the target platform:

• The FORCESNLPsolver folder

• The interface from step 3

5. Compile the solver. The compilation command would be (supposing you are in the
directory which contains the FORCESNLPsolver folder):

<Compiler_exec> LowLevel_BasicExample.c <compiled_solver> <additional_libs>

Where:

• <Compiler_exec> would be the compiler used in the target

• <compiled_solver> would be one of the compiled files of step 2

• <additional_libs> would be possible libraries that need to be linked to resolve existing
dependencies.

– For Linux/MacOS it’s usually necessary to link the math library (-lm)

318 Chapter 13. Code Deployment

FORCESPRO User Manual

– For Windows you usually need to link the iphlpapi.lib library (it’s distributed with
the Intel Compiler, MinGW as well as Matlab) and unless you’re using MinGW some
additional intel libraries (those are included in the FORCESPRO client under the
folder libs_Intel – if missing they are downloaded after code generation)

Chapter 13. Code Deployment 319

FORCESPRO User Manual

13.1.3 Y2F interface

The steps to deploy and simulate a FORCESPRO controller on most targets are detailed be-
low.

1. In the Y2F interface example mpc_basic_example.m set the code generation options:

codeoptions.platform = '<platform_name>'; % to specify the platform
codeoptions.printlevel = 0; % optional, on some platforms printing is not supported

and then generate the code for your solver (henceforth referred to as “simpleMPC_solver”,
placed in the folder “Y2F”) using the Y2F interface.

2. The Y2F solver is composed of a main solver which calls multiple internal solvers. The
file describing the main solver is:

• simpleMPC_solver.c inside the folder interface

3. The internal solvers are provided as compiled files. For most target platforms you will
receive the following compiled files:

• For MinGW/Linux/MacOS:

– a static library file libinternal_simpleMPC_solver_1.a inside the folder lib_target

– a shared library file libinternal_simpleMPC_solver_1.so inside the folder lib_target

• For Windows:

– a static library file internal_simpleMPC_solver_1_static.lib inside the folder
lib_target

– a dynamic library file internal_simpleMPC_solver_1.dll with its definition file for
compilation internal_simpleMPC_solver_1.lib inside the folder lib_target

You need only one of those to build the solver.

Important: The shared library and the dynamic library if used for building need to be present
during runtime as well.

4. Create an interface to call the solver and perform a simulation/test.

You can find a C interface for this example to try it out for yourself in the examples folder that
comes with your client.

5. Copy in the target platform:

• The simpleMPC_solver folder

• The interface from step 4

6. Compile the solver. The compilation command would be (supposing you are in the
directory which contains the simpleMPC_solver folder):

<Compiler_exec> Y2F_mpc_basic_example.c simpleMPC_solver/interface/simpleMPC_solver.c
→˓<compiled_solver> <additional_libs>

Where:

• <Compiler_exec> would be the compiler used in the target

• <compiled_solver> would be one of the compiled files of step 3

• <additional_libs> would be possible libraries that need to be linked to resolve existing
dependencies.

– For Linux/MacOS it’s usually necessary to link the math library (-lm)

320 Chapter 13. Code Deployment

FORCESPRO User Manual

– For Windows you usually need to link the iphlpapi.lib library (it’s distributed with
the Intel Compiler, MinGW as well as Matlab) and sometimes some additional intel
libraries (those are included in the FORCESPRO client under libs_Intel – if missing
they are downloaded after code generation)

Chapter 13. Code Deployment 321

FORCESPRO User Manual

13.1.4 C interface: memory allocations

The C interface provides some flexibility in how the solver memory is allocated:

• internal memory: memory buffer is statically allocated inside the solver library

• external memory: the user is responsible for allocating the memory buffer

The internal memory option is easier to use and thus the default way of interfacing the solver
in C. The external memory option is recommended for users who want full control over mem-
ory allocation (static or dynamic), or who require multiple memory buffers (e.g. for running a
solver in parallel, see External parallelism).

Henceforth, we assume a generated solver named FORCESNLPsolver and demonstrate how to
use external and internal memory buffers. We assume the reader is already acquainted with
the C interface (see section High-level interface).

You can find the full code for working examples for the internal and external memory inter-
faces including instructions on how to run them in the examples\StandaloneExecution folder
that comes with your client.

Internal memory

If you don’t need control over the memory buffer, the internal memory C interface is the
recommended way of calling a generated solver in C:

/* additional header for internal memory functionality */
#include "FORCESNLPsolver/include/FORCESNLPsolver_memory.h"

/* handle to the solver memory */
FORCESNLPsolver_mem * mem_handle;

/* Get i-th memory buffer */
int i = 0;
mem_handle = FORCESNLPsolver_internal_mem(i);
/* Note: number of available memory buffers is controlled by code option max_num_mem␣
→˓*/

/* check that memory is in valid state: */
if (mem_handle == NULL)
{

/* this happens if i >= max_num_mem */
return 1;

}
exit_code = FORCESNLPsolver_solve(..., mem_handle, ...)

By default, one memory buffer is available (max_num_mem = 1). For further information on the
code option max_num_mem, see Table 13.1.

External memory

The following code sample demonstrates the use of external memory with dynamic alloca-
tion:

/* memory buffer allocated by the user of type char (representing bytes) */
char * mem;

/* handle to the solver memory */

(continues on next page)

322 Chapter 13. Code Deployment

FORCESPRO User Manual

(continued from previous page)

FORCESNLPsolver_mem * mem_handle;

/* required memory size in bytes */
size_t mem_size = FORCESNLPsolver_get_mem_size();

/* dynamically allocate memory buffer */
mem = malloc(mem_size);

/* cast memory buffer to solver memory
* note: i can be set to 0 if no thread safety required */
int i = 0;
mem_handle = FORCESNLPsolver_external_mem(mem, i, mem_size);

/* check that memory is in valid state: */
if (mem_handle == NULL)
{

return 1;
}
exit_code = FORCESNLPsolver_solve(..., mem_handle, ...)

/* free user-allocated memory */
free(mem);

For static allocation, the memory size MEM_SIZE needs to be set at compile time:

/* memory size in bytes s.t. MEM_SIZE >= FORCESNLPsolver_get_mem_size(): */
#define MEM_SIZE 12345

/* statically allocated memory buffer of size MEM_SIZE bytes */
static char mem[MEM_SIZE];
/* cast buffer to solver memory */
mem_handle = FORCESNLPsolver_external_mem(mem, 0, MEM_SIZE);

/* check that memory is in valid state: */
if (mem_handle == NULL)
{

/* this happens if MEM_SIZE < FORCESNLPsolver_get_mem_size() */
return 1;

}

The minimum required MEM_SIZE is system and compiler dependent. It can be easily ob-
tained by compiling FORCESNLPsolver\interface\FORCESNLPsolver_get_mem_size.c and by link-
ing against the solver library on the target device. The output of the obtained executable is
equal to the value returned by FORCESNLPsolver_get_mem_size().

For memory-critical systems, we advise to disable the internal memory buffer by setting (see
also Table 13.1)

Matlab

Python

codeoptions.max_num_mem = 0;

codeoptions.max_num_mem = 0

Otherwise, the solver library still contains one internal memory buffer required by the client
to run the solver.

Chapter 13. Code Deployment 323

FORCESPRO User Manual

Code options related to solver memory

By default, one memory buffer is statically allocated within the solver library, to be used only
with the internal memory interface. The number of internal memory buffers n can be con-
trolled by setting the option

Matlab

Python

codeoptions.max_num_mem = n;

codeoptions.max_num_mem = n

The required number of buffers depends on the use case:

Table 13.1: Code option max_num_mem

max_num_mem Use case Side effects
0 external memory interface: no excess memory. external memory interface: Solver can only be run from C, otherwise solver returns exitflag -102.
1 (default) internal memory interface: default use. external memory interface: unused excess memory is allocated.
n internal memory interface: thread safe for up to n concurrent solvers external memory interface: unused excess memory is allocated.

Obtaining memory size

The required memory size for a solver can be obtained by calling the two utility functions
provided by the solver library:

size_t FORCESNLPsolver_get_mem_size(void);
size_t FORCESNLPsolver_get_const_size(void);

These functions return the memory size for all non-const / const variables, respectively. This
information is also printed in the solver output if printlevel = 2. Note that the memory size
depends on the system and compiler. The actual memory footprint might be larger as re-
ported by these functions since they account only for the memory to store data (data or bss
segment in the binary), and not for the full binary size.

The size returned by FORCESNLPsolver_get_mem_size refers to an internal or external mem-
ory buffer. The size returned by FORCESNLPsolver_get_const_size refers to additional con-
stant memory that is not exposed to the user. To obtain the total memory size of
a solver that is called in parallel, the size of the memory buffer must be multiplied
with the number of threads: total_size = NUM_THREADS * FORCESNLPsolver_get_mem_size() +
FORCESNLPsolver_get_const_size().

13.2 dSPACE deployment through Simulink Coder

• Platform Specific Configurations

– Platform name codeoption

– Simulink Model HW Target Configuration

• High-level interface

• Y2F interface

– Instructions

324 Chapter 13. Code Deployment

FORCESPRO User Manual

This process applies to the following dSPACE platforms

• dSPACE MicroAutoBox II

• dSPACE AutoBox

• dSPACE MicroLabBox

Important: When deploying to a target hardware platform, the library included in the
lib_target directory of the generated solver should be used instead of the library in the lib
directory.

13.2.1 Platform Specific Configurations

Platform name codeoption

When generating code for HW target platforms, codeoptions.platform needs to be set.

• dSPACE MicroAutoBox II: 'dSPACE-MABII'

• dSPACE AutoBox: 'dSPACE-AutoBox'

• dSPACE MicroLabBox: 'dSPACE-MicroLabBox'

Simulink Model HW Target Configuration

When creating a Simulink Model for HW target platforms, certain hardware options need to
be set.

• Simulink Model Template:

– dSPACE MicroAutoBox II: RTI1401

– dSPACE AutoBox: RTI1007

– dSPACE MicroLabBox: RTI1202

• System target file:

– dSPACE MicroAutoBox II: rti1401.tlc

– dSPACE AutoBox: rti1007.tlc

– dSPACE MicroLabBox: rti1202.tlc

• Template makefile:

– dSPACE MicroAutoBox II: rti1401.tmf

– dSPACE AutoBox: rti1007.tmf

– dSPACE MicroLabBox: rti1202.tmf

13.2.2 High-level interface

The steps to deploy and simulate a FORCESPRO controller on a dSPACE platform are detailed
below.

1. (Figure 13.1) Set the code generation options (for <platform_name> see Platform name
codeoption):

Chapter 13. Code Deployment 325

FORCESPRO User Manual

codeoptions.platform = '<platform_name>'; % to specify the platform
codeoptions.printlevel = 0; % on some platforms printing is not supported
codeoptions.cleanup = 0; % to keep necessary files for target compile

and then generate the code for your solver (henceforth referred to as “FORCESNLPsolver”,
placed in the folder “BasicExample”) using the high-level interface.

Figure 13.1: Set the appropriate code generation options.

2. (Figure 13.2) Create a new Simulink model using the Simulink model template provided
by dSPACE (for <simulink_model_template> see Simulink Model HW Target Configura-
tion).

3. (Figure 13.3) Populate the Simulink model with the system you want to control.

4. (Figure 13.4) Make sure the FORCESNLPsolver_simulinkBlock.mexw64 file (created during
code generation) is on the Matlab path.

5. (Figure 13.5) Open the FORCESNLPsolver_lib.mdl Simulink model file, contained in the
interface folder of the FORCESNLPsolver folder created during code generation.

6. (Figure 13.6) Copy-paste the FORCESPRO Simulink block into your simulation model and
connect its inputs and outputs appropriately.

7. (Figure 13.7) Access the Simulink model’s options.

8. (Figure 13.8) In the “Solver” tab, set the options:

• Simulation start/stop time: Depending on the simulation wanted.

• Solver type: Discrete or fixed-step.

• Fixed-step size: Needs to be higher than the execution time of the solver.

9. (Figure 13.9) In the “Code Generation” tab, set the options (for <tlc_file> and
<makefile_template> see Simulink Model HW Target Configuration):

326 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.2: Create a Simulink model.

Figure 13.3: Populate the Simulink model.

Chapter 13. Code Deployment 327

FORCESPRO User Manual

Figure 13.4: Add the folder containing the .mexw64 solver file to the Matlab path.

328 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.5: Open the generated Simulink solver model.

Figure 13.6: Copy-paste and connect the FORCESPRO block.

Chapter 13. Code Deployment 329

FORCESPRO User Manual

Figure 13.7: Open the Simulink model options.

Figure 13.8: Set the Simulink solver options.

330 Chapter 13. Code Deployment

FORCESPRO User Manual

• System target file: <tlc_file>

• Language: C

• Generate makefile: On

• Template makefile: <makefile_template>

• Make command: make_rti

10. (Figure 13.10) In the “Code Generation/Custom Code” tab, include the directories:

• BasicExample

• BasicExample\FORCESNLPsolver\interface

• BasicExample\FORCESNLPsolver\lib_target

11. (Figure 13.11) In the “Code Generation/Custom Code” tab, add the source files:

• FORCESNLPsolver_simulinkBlock.c

• FORCESNLPsolver_adtool2forces.c

• FORCESNLPsolver_casadi.c

12. (Figure 13.12) In the “Code Generation/Custom Code” tab, add the library file:

• FORCESNLPsolver.lib

Figure 13.9: Set the Simulink code generation options.

13. (Figure 13.13) Access the FORCESPRO block’s parameters.

14. (Figure 13.14) Remove the “FORCESNLPsolver” prefix from the S-function module.

15. (Figure 13.15) Compile the code of the Simulink model. This will also automatically load
the model to the connected dSPACE platform.

16. Deployment is complete and simulations can now be run on the dSPACE platform.

Chapter 13. Code Deployment 331

FORCESPRO User Manual

Figure 13.10: Add the directories included for the code generation.

Figure 13.11: Add the source files used for the code generation.

332 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.12: Add the libraries used for the code generation.

Figure 13.13: Open the FORCESPRO block’s parameters.

Chapter 13. Code Deployment 333

FORCESPRO User Manual

Figure 13.14: Remove the leading solver name from the S-function module.

Figure 13.15: Compile the code of the Simulink model.

334 Chapter 13. Code Deployment

FORCESPRO User Manual

13.2.3 Y2F interface

Instructions

The steps to deploy and simulate a FORCESPRO controller on a dSPACE platform are detailed
below.

1. (Figure 13.16) Set the code generation options (for <platform_name> see Platform name
codeoption):

codeoptions.platform = '<platform_name>'; % to specify the platform
codeoptions.printlevel = 0; % on some platforms printing is not supported

and then generate the code for your solver (henceforth referred to as “simplempc_solver”,
placed in the folder “Y2F”) using the Y2F interface.

Figure 13.16: Set the appropriate code generation options.

2. (Figure 13.17) Create a new Simulink model using the Simulink model template provided
by dSPACE (for <simulink_model_template> see Simulink Model HW Target Configura-
tion).

3. (Figure 13.18) Populate the Simulink model with the system you want to control.

4. (Figure 13.19) Make sure the simplempc_solver_simulinkBlock.mexw64 file (created during
code generation) is on the Matlab path.

5. (Figure 13.20) Copy-paste the FORCESPRO Simulink block, contained in the created
y2f_simulink_lib.slx Simulink model file, into your simulation model and connect its
inputs and outputs appropriately.

6. (Figure 13.21) Access the Simulink model’s options.

7. (Figure 13.22) In the “Solver” tab, set the options:

• Simulation start/stop time: Depending on the simulation wanted.

Chapter 13. Code Deployment 335

FORCESPRO User Manual

Figure 13.17: Create a Simulink model.

Figure 13.18: Populate the Simulink model.

336 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.19: Add the folder containing the .mexw64 solver file to the Matlab path.

Figure 13.20: Copy-paste and connect the FORCESPRO block.

Chapter 13. Code Deployment 337

FORCESPRO User Manual

• Solver type: Discrete or fixed-step.

• Fixed-step size: Needs to be higher than the execution time of the solver.

Figure 13.21: Open the Simulink model options.

8. (Figure 13.23) In the “Code Generation/RTI general build options” tab, set the options (for
<tlc_file> and <makefile_template> see Simulink Model HW Target Configuration):

• System target file: <tlc_file>

• Language: C

• Generate makefile: On

• Template makefile: <makefile_template>

• Make command: make_rti

9. (Figure 13.24) In the “Code Generation/Custom Code” tab, include the directories:

• Y2F

• Y2F\simplempc_solver\interface

• Y2F\simplempc_solver\lib_target

10. (Figure 13.25) In the “Code Generation/Custom Code” tab, add the source files:

• simplempc_solver_simulinkBlock.c

• simplempc_solver.c

11. (Figure 13.26) In the “Code Generation/Custom Code” tab, add the library files:

• internal_simplempc_solver_1.lib

12. (Figure 13.27) Compile the code of the Simulink model. This will also automatically load
the model to the connected dSPACE platform.

13. Deployment is complete and simulations can now be run on the dSPACE platform.

338 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.22: Set the Simulink solver options.

Figure 13.23: Set the Simulink code generation options.

Chapter 13. Code Deployment 339

FORCESPRO User Manual

Figure 13.24: Add the directories included for the code generation.

Figure 13.25: Add the source files used for the code generation.

340 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.26: Add the libraries used for the code generation.

Figure 13.27: Compile the code of the Simulink model.

Chapter 13. Code Deployment 341

FORCESPRO User Manual

13.3 dSPACE deployment through ConfigurationDesk

• Code Generation

• Solver Execution

This process applies to the following dSPACE platforms

• dSPACE MicroAutoBox III

• dSPACE SCALEXIO

Important: When deploying to a target hardware platform, the library included in the
lib_target directory of the generated solver should be used instead of the library in the lib
directory.

13.3.1 Code Generation

The steps to deploy a FORCESPRO controller on a dSPACE platform are detailed below.

1) (Figure 13.28) Set the code generation options:

When generating code for HW target platforms, codeoptions.platform needs to be set.

• dSPACE MicroAutoBox III: 'dSPACE-MABXIII'

• dSPACE SCALEXIO: 'dSPACE-SCALEXIO'

codeoptions.platform = '<platform_name>'; % to generate code for the dSPACE platform
codeoptions.printlevel = 0; % printing should be disabled on target HW
codeoptions.cleanup = 0; % to keep necessary files for target compile

Figure 13.28: Set the appropriate code generation options.

1) Create a new Simulink model (henceforth referred to as dSPACE.slx) using the dSPACE
Run-Time Target template provided by dSPACE and save it in the BasicExample folder (see
Figure 13.29).

2) Populate the Simulink model with the system you want to control (see Figure 13.30).

342 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.29: Create a Simulink model.

Figure 13.30: Populate the Simulink model.

Chapter 13. Code Deployment 343

FORCESPRO User Manual

4) Run the BasicExample.m script to perform code generation for your solver (henceforth
referred to as FORCESNLPsolver, placed in the folder “BasicExample”). This will create the
necessary files for your building (see Figure 13.31 , Figure 13.32 and Figure 13.33).

5) The FORCESNLPsolver_simulinkBlock.<mex_extension> file (created during code genera-
tion) needs to be in the same path as your model (see Figure 13.34).

6) Open the FORCESNLPsolver_lib.mdlSimulink model file, contained in the interface folder
of the FORCESNLPsolver folder created during code generation (see Figure 13.35).

7) Copy-paste the FORCESPRO Simulink block into your simulation model and connect its
inputs and outputs appropriately (see Figure 13.36).

8) Access the Simulink model’s options. In the “Solver” tab, set the options (see Figure
13.37):

• Simulation start/stop time: Depending on the simulation wanted.

• Solver type: Discrete or fixed-step.

• Fixed-step size: Needs to be higher than the execution time of the solver.

9) In the “Code Generation” tab, set the options (see Figure 13.38):

• System target file: dsrt.tlc

• Language: C / C++

• Generate makefile: Checked

• Template makefile: dsrt_default_tmf

• Make command: make_dsrt

10) In the “Code Generation/Custom Code” tab, include the directories (see Figure 13.39):

• .\FORCESNLPsolver\include

• .\FORCESNLPsolver\interface

• .\FORCESNLPsolver\lib_target

11) In the “Code Generation/Custom Code” tab, add the source files (see Figure 13.40):

• FORCESNLPsolver_simulinkBlock.c

• FORCESNLPsolver_adtool2forces.c

• FORCESNLPsolver_casadi.c

12) In the “Code Generation/Custom Code” tab, add the library file (see Figure 13.41):

• libFORCESNLPsolver.a

13) Access the FORCESPRO block’s parameters (see Figure 13.42).

14) Remove the “FORCESNLPsolver” prefix from the S-function module (see Figure 13.43).

15) Create a new Project and Application in ConfigurationDesk. Select directory of project,
name of project and application, the model dSPACE.slx as the application process and
connected dSPACE platform to deploy to (see Figure 13.44).

16) Go to the tasks tab and make sure the period of the Periodic Task matches the fixed step
size selected in the Simulink model options (see Figure 13.45).

17) Go to the build tab and start the building process. After building is complete the appli-
cation will be loaded automatically in the dSPACE platform (see Figure 13.46).

344 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.31: Generated files.

Chapter 13. Code Deployment 345

FORCESPRO User Manual

Figure 13.32: Solver interface files.

Figure 13.33: Solver libraries.

346 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.34: The .<mex_extension> solver file is in the same path as the model.

Chapter 13. Code Deployment 347

FORCESPRO User Manual

Figure 13.35: Open the generated Simulink solver model.

Figure 13.36: Copy-paste and connect the FORCESPRO block.

348 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.37: Set the Simulink solver options.

Figure 13.38: Set the Simulink code generation options.

Chapter 13. Code Deployment 349

FORCESPRO User Manual

Figure 13.39: Add the directories included for the code generation.

Figure 13.40: Add the source files used for the code generation.

350 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.41: Add the libraries used for the code generation.

Figure 13.42: Open the FORCESPRO block’s parameters.

Chapter 13. Code Deployment 351

FORCESPRO User Manual

Figure 13.43: Remove the leading solver name from the S-function module.

352 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.44: Create project and application in ConfigurationDesk.

Figure 13.45: Set period of Periodic Task.

Chapter 13. Code Deployment 353

FORCESPRO User Manual

Figure 13.46: Build the project.

354 Chapter 13. Code Deployment

FORCESPRO User Manual

13.3.2 Solver Execution

The steps to simulate a FORCESPRO controller on a dSPACE platform are detailed below.

1) After code generation with FORCESPRO and building with the ConfigurationDesk, the
ConfigurationDesk project will have generated files to use to run your model on the
dSPACE platform (see Figure 13.47 and Figure 13.48).

Figure 13.47: The generated files from the ConfigurationDesk building.

Figure 13.48: The files necessary for the simulation of the FORCESPRO controller.

2) Open dSpace Control Desk and select create new project and name it (see Figure 13.49).

3) Name the experiment to execute (see Figure 13.50).

4) Select the platform to which you will deploy the generated executable (see Figure 13.51).

5) Import the variable description file BasicExample.sdf in order to have access to the model
variables and see the results of the execution (see Figure 13.52).

6) On the project layout select the tab Variables and on the BasicExample.sdf category
expand Model Root.

7) Select U OUTPUT and X OUTPUT and Drag & Drop all the input variables together to the
Layout. In the opened menu select Time Plotter (see Figure 13.53 and Figure 13.54).

8) To see all the plots concurrently right-click on the left of the Y-axis and select YAxes-view>
Horizontal stacked (see Figure 13.55).

Chapter 13. Code Deployment 355

FORCESPRO User Manual

Figure 13.49: Start a new project and name it.

Figure 13.50: Name your experiment.

356 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.51: Select the dSPACE platform.

Figure 13.52: Import the variable description file.

Chapter 13. Code Deployment 357

FORCESPRO User Manual

Figure 13.53: Add the inputs of U OUTPUT in a Time Plotter.

Figure 13.54: Add the inputs of X OUTPUT in the same Time Plotter.

358 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.55: Select to show all the signals on the same plot with their own Y-axes

Chapter 13. Code Deployment 359

FORCESPRO User Manual

9) Application should have already been loaded from the building of ConfigurationDesk.
Otherwise, select the Platforms/Devices tab. Right-Click on your platform and select
Real-Time Application> Load. Choose the executable file BasicExample.rta (see Figure
13.56 and Figure 13.57).

10) Select Go Online and Start Measuring to see the results. (see Figure 13.58 and Figure
13.59).

Figure 13.56: Load the application on the dSPACE platform.

Figure 13.57: Select BasicExample.rta from the ConfigurationDesk project folder.

360 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.58: Buttons Go Online and Start Measuring to receive execution results.

Figure 13.59: Plots and results from experiment on a dSPACE platform.

Chapter 13. Code Deployment 361

FORCESPRO User Manual

13.4 Speedgoat

• High-level interface

– Instructions

– Figures

• Y2F interface

– Instructions

– Figures

Important: When deploying to a target hardware platform, the library included in the
lib_target directory of the generated solver should be used instead of the library in the lib
directory.

13.4.1 High-level interface

Instructions

The steps to deploy and simulate a FORCESPRO controller on a Speedgoat platform are de-
tailed below.

1. (Figure 13.60) Set the code generation options:

codeoptions.platform = 'Speedgoat-x86'; % to specify the platform
codeoptions.printlevel = 0; % on some platforms printing is not supported
codeoptions.cleanup = 0; % to keep necessary files for target compile

and then generate the code for your solver (henceforth referred to as “FORCESNLPsolver”,
placed in the folder “BasicExample”) using the high-level interface.

2. (Figure 13.61) Create a new Simulink model using the blank model template.

3. (Figure 13.62) Populate the Simulink model with the system you want to control.

4. (Figure 13.63) Make sure the FORCESNLPsolver_simulinkBlock.mexw64 file (created during
code generation) is on the Matlab path.

5. (Figure 13.64) Open the FORCESNLPsolver_lib.mdl Simulink model file, contained in the
interface folder of the FORCESNLPsolver folder created during code generation.

6. (Figure 13.65) Copy-paste the FORCESPRO Simulink block into your simulation model
and connect its inputs and outputs appropriately.

7. (Figure 13.66) Access the Simulink model’s options.

8. (Figure 13.67) In the “Solver” tab, set the options:

• Simulation start/stop time: Depending on the simulation wanted.

• Solver type: Discrete or fixed-step.

• Fixed-step size: Needs to be higher than the execution time of the solver.

9. (Figure 13.68) In the “Code Generation” tab, set the options:

• System target file: slrt.tlc

• Language: C

362 Chapter 13. Code Deployment

FORCESPRO User Manual

• Generate makefile: On

• Template makefile: slrt_default_tmf

• Make command: make_rtw

10. (Figure 13.69) In the “Code Generation/Custom Code” tab, include the directories:

• BasicExample

• BasicExample\FORCESNLPsolver\interface

• BasicExample\FORCESNLPsolver\lib_target

11. (Figure 13.70) In the “Code Generation/Custom Code” tab, add the source files:

• FORCESNLPsolver_simulinkBlock.c

• FORCESNLPsolver_adtool2forces.c

• FORCESNLPsolver_casadi.c

12. (Figure 13.71) In the “Code Generation/Custom Code” tab, add the library file:

• FORCESNLPsolver.lib

13. (Figure 13.72) Access the FORCESPRO block’s parameters.

14. (Figure 13.73) Remove “FORCESNLPsolver” and “FORCESNLPsolver_simulinkBlock”
from the S-function module.

15. (Figure 13.74) Compile the code of the Simulink model. This will also automatically load
the model to the connected Speedgoat platform.

16. Deployment is complete and simulations can now be run on the Speedgoat platform.

17. Run the simulation on the Speedgoat platform.

You can find the Matlab code of this simulation to try it out for yourself in the examples
folder that comes with your client.

Figures

Figure 13.60: Set the appropriate code generation options.

Chapter 13. Code Deployment 363

FORCESPRO User Manual

Figure 13.61: Create a Simulink model.

Figure 13.62: Populate the Simulink model.

364 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.63: Add the folder containing the .mexw64 solver file to the Matlab path.

Chapter 13. Code Deployment 365

FORCESPRO User Manual

Figure 13.64: Open the generated Simulink solver model.

Figure 13.65: Copy-paste and connect the FORCESPRO block.

366 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.66: Open the Simulink model options.

Figure 13.67: Set the Simulink solver options.

Chapter 13. Code Deployment 367

FORCESPRO User Manual

Figure 13.68: Set the Simulink code generation options.

Figure 13.69: Add the directories included for the code generation.

368 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.70: Add the source files used for the code generation.

Chapter 13. Code Deployment 369

FORCESPRO User Manual

Figure 13.71: Add the libraries used for the code generation.

Figure 13.72: Open the FORCESPRO block’s parameters.

370 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.73: Remove the default data from the S-function module.

Chapter 13. Code Deployment 371

FORCESPRO User Manual

Figure 13.74: Compile the code of the Simulink model.

372 Chapter 13. Code Deployment

FORCESPRO User Manual

13.4.2 Y2F interface

Instructions

The steps to deploy and simulate a FORCESPRO controller on a Speedgoat platform are de-
tailed below.

1. (Figure 13.75) Set the code generation options:

codeoptions.platform = 'Speedgoat-x86'; % to specify the platform
codeoptions.printlevel = 0; % on some platforms printing is not supported

and then generate the code for your solver (henceforth referred to as “simplempc_solver”,
placed in the folder “Y2F”) using the Y2F interface.

2. (Figure 13.76) Create a new Simulink model using the blank model template.

3. (Figure 13.77) Populate the Simulink model with the system you want to control.

4. (Figure 13.78) Make sure the simplempc_solver_simulinkBlock.mexw64 file (created during
code generation) is on the Matlab path.

5. (Figure 13.79) Copy-paste the FORCESPRO Simulink block, contained in the created
y2f_simulink_lib.slx Simulink model file, into your simulation model and connect its
inputs and outputs appropriately.

6. (Figure 13.80) Access the Simulink model’s options.

7. (Figure 13.81) In the “Solver” tab, set the options:

• Simulation start/stop time: Depending on the simulation wanted.

• Solver type: Discrete or fixed-step.

• Fixed-step size: Needs to be higher than the execution time of the solver.

8. (Figure 13.82) In the “Code Generation/RTI general build options” tab, set the options:

• System target file: slrt.tlc

• Language: C

• Generate makefile: On

• Template makefile: slrt_default_tmf

• Make command: make_rtw

9. (Figure 13.83) In the “Code Generation/Custom Code” tab, include the directories:

• Y2F\simplempc_solver\interface

• Y2F\simplempc_solver\lib_target

10. (Figure 13.84) In the “Code Generation/Custom Code” tab, add the source files:

• simplempc_solver_simulinkBlock.c

• simplempc_solver.c

11. (Figure 13.85) In the “Code Generation/Custom Code” tab, add the library files:

• internal_simplempc_solver_1.lib

12. (Figure 13.86) Compile the code of the Simulink model. This will also automatically load
the model to the connected Speedgoat platform.

13. Deployment is complete and simulations can now be run on the Speedgoat platform.

Chapter 13. Code Deployment 373

FORCESPRO User Manual

14. Run the simulation on the Speedgoat platform.

You can find the Matlab code of this simulation to try it out for yourself in the examples
folder that comes with your client.

Figures

Figure 13.75: Set the appropriate code generation options.

Figure 13.76: Create a Simulink model.

374 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.77: Populate the Simulink model.

Figure 13.78: Add the folder containing the .mexw64 solver file to the Matlab path.

Figure 13.79: Copy-paste and connect the FORCESPRO block.

Chapter 13. Code Deployment 375

FORCESPRO User Manual

Figure 13.80: Open the Simulink model options.

Figure 13.81: Set the Simulink solver options.

376 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.82: Set the Simulink code generation options.

Figure 13.83: Add the directories included for the code generation.

Chapter 13. Code Deployment 377

FORCESPRO User Manual

Figure 13.84: Add the source files used for the code generation.

378 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.85: Add the libraries used for the code generation.

Figure 13.86: Compile the code of the Simulink model.

Chapter 13. Code Deployment 379

FORCESPRO User Manual

13.5 Speedgoat QNX

• High-level interface

– Instructions

– Figures

• Y2F interface

– Instructions

– Figures

Important: When deploying to a target hardware platform, the library included in the
lib_target directory of the generated solver should be used instead of the library in the lib
directory.

13.5.1 High-level interface

Instructions

The steps to deploy and simulate a FORCESPRO controller on a Speedgoat QNX platform are
detailed below.

1. (Figure 13.87) Set the code generation options:

codeoptions.platform = 'Speedgoat-QNX'; % to specify the platform
codeoptions.printlevel = 0; % on some platforms printing is not supported
codeoptions.cleanup = 0; % to keep necessary files for target compile

and then generate the code for your solver (henceforth referred to as “FORCESNLPsolver”,
placed in the folder “BasicExample”) using the high-level interface.

2. (Figure 13.88) Create a new Simulink model using the blank model template.

3. (Figure 13.89) Populate the Simulink model with the system you want to control.

4. (Figure 13.90) Make sure the FORCESNLPsolver_simulinkBlock.mexw64 file (created during
code generation) is on the Matlab path.

5. (Figure 13.91) Open the FORCESNLPsolver_lib.mdl Simulink model file, contained in the
interface folder of the FORCESNLPsolver folder created during code generation.

6. (Figure 13.92) Copy-paste the FORCESPRO Simulink block into your simulation model
and connect its inputs and outputs appropriately.

7. (Figure 13.93) Access the Simulink Model’s Settings.

8. (Figure 13.94) In the “Solver” tab, set the options:

• Simulation start/stop time: Depending on the simulation wanted.

• Solver type: Discrete or fixed-step.

• Fixed-step size: Needs to be higher than the execution time of the solver.

9. (Figure 13.95) In the “Code Generation” tab, set the options:

• System target file: slrealtime.tlc

• Generate makefile: Off

380 Chapter 13. Code Deployment

FORCESPRO User Manual

10. (Figure 13.96) In the “Code Generation/Custom Code” tab, include the directories:

• BasicExample

• BasicExample\FORCESNLPsolver\interface

• BasicExample\FORCESNLPsolver\lib_target

11. (Figure 13.97) In the “Code Generation/Custom Code” tab, add the source files:

• FORCESNLPsolver_simulinkBlock.c

• FORCESNLPsolver_adtool2forces.c

• FORCESNLPsolver_casadi.c

12. (Figure 13.98) In the “Code Generation/Custom Code” tab, add the library file:

• libFORCESNLPsolver.a

13. (Figure 13.99) Access the FORCESPRO block’s parameters.

14. (Figure 13.100) Remove “FORCESNLPsolver” and “FORCESNLPsolver_simulinkBlock”
from the S-function module.

15. (Figure 13.101) Compile the code of the Simulink model. This will also automatically load
the model to the connected Speedgoat platform.

16. Deployment is complete and simulations can now be run on the Speedgoat platform.

Figures

Figure 13.87: Set the appropriate code generation options.

Chapter 13. Code Deployment 381

FORCESPRO User Manual

Figure 13.88: Create a Simulink model.

Figure 13.89: Populate the Simulink model.

382 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.90: Add the folder containing the .mexw64 solver file to the Matlab path.

Chapter 13. Code Deployment 383

FORCESPRO User Manual

Figure 13.91: Open the generated Simulink solver model.

Figure 13.92: Copy-paste and connect the FORCESPRO block.

384 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.93: Open the Simulink Model Settings.

Figure 13.94: Set the Simulink solver options.

Chapter 13. Code Deployment 385

FORCESPRO User Manual

Figure 13.95: Set the Simulink code generation options.

Figure 13.96: Add the directories included for the code generation.

386 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.97: Add the source files used for the code generation.

Figure 13.98: Add the libraries used for the code generation.

Figure 13.99: Open the FORCESPRO block’s parameters.

Chapter 13. Code Deployment 387

FORCESPRO User Manual

Figure 13.100: Remove the default data from the S-function module.

Figure 13.101: Compile the code of the Simulink model.

388 Chapter 13. Code Deployment

FORCESPRO User Manual

13.5.2 Y2F interface

Instructions

The steps to deploy and simulate a FORCESPRO controller on a Speedgoat QNX platform are
detailed below.

1. (Figure 13.102) Set the code generation options:

codeoptions.platform = 'Speedgoat-QNX'; % to specify the platform
codeoptions.printlevel = 0; % on some platforms printing is not supported

and then generate the code for your solver (henceforth referred to as “simplempc_solver”,
placed in the folder “Y2F”) using the Y2F interface.

2. (Figure 13.103) Create a new Simulink model using the blank model template.

3. (Figure 13.104) Populate the Simulink model with the system you want to control.

4. (Figure 13.105) Make sure the simplempc_solver_simulinkBlock.mexw64 file (created during
code generation) is on the Matlab path.

5. (Figure 13.106) Copy-paste the FORCESPRO Simulink block, contained in the created
y2f_simulink_lib.slx Simulink model file, into your simulation model and connect its
inputs and outputs appropriately.

6. (Figure 13.107) Access the Simulink Model’s Settings.

7. (Figure 13.108) In the “Solver” tab, set the options:

• Simulation start/stop time: Depending on the simulation wanted.

• Solver type: Discrete or fixed-step.

• Fixed-step size: Needs to be higher than the execution time of the solver.

8. (Figure 13.109) In the “Code Generation/RTI general build options” tab, set the options:

• System target file: slrealtime.tlc

• Generate makefile: Off

9. (Figure 13.110) In the “Code Generation/Custom Code” tab, include the directories:

• Y2F

• Y2F\simplempc_solver\interface

• Y2F\simplempc_solver\lib_target

10. (Figure 13.111) In the “Code Generation/Custom Code” tab, add the source files:

• simplempc_solver_simulinkBlock.c

• simplempc_solver.c

11. (Figure 13.112) In the “Code Generation/Custom Code” tab, add the library file:

• libinternal_simplempc_solver_1.a

12. (Figure 13.113) Compile the code of the Simulink model. This will also automatically load
the model to the connected Speedgoat platform.

13. Deployment is complete and simulations can now be run on the Speedgoat platform.

Figures

Chapter 13. Code Deployment 389

FORCESPRO User Manual

Figure 13.102: Set the appropriate code generation options.

Figure 13.103: Create a Simulink model.

Figure 13.104: Populate the Simulink model.

390 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.105: Add the folder containing the .mexw64 solver file to the Matlab path.

Figure 13.106: Copy-paste and connect the FORCESPRO block.

Chapter 13. Code Deployment 391

FORCESPRO User Manual

Figure 13.107: Open the Simulink Model Settings.

Figure 13.108: Set the Simulink solver options.

392 Chapter 13. Code Deployment

FORCESPRO User Manual

Figure 13.109: Set the Simulink code generation options.

Figure 13.110: Add the directories included for the code generation.

Figure 13.111: Add the source files used for the code generation.

Chapter 13. Code Deployment 393

FORCESPRO User Manual

Figure 13.112: Add the libraries used for the code generation.

Figure 13.113: Compile the code of the Simulink model.

394 Chapter 13. Code Deployment

FORCESPRO User Manual

Chapter 14

Multicore parallelization

FORCESPRO supports two levels of multicore parallelism:

• Internal parallelism (Internal parallelism): the work for a solver is distributed over multi-
ple cores

• External parallelism (External parallelism): a solver is run multiple times on multiple
cores with different inputs

For combining both levels of parallism, see section Combining external and internal paral-
lelism.

14.1 Internal parallelism

FORCESPRO supports the computation on multiple cores, which is particularly useful for
large problems and long horizons (the workload is split along the horizon to multiple cores).
This is implemented by the use of OpenMP and can be switched on by using

Matlab

Python

codeoptions.parallel = 1;

codeoptions.parallel = 1

By default multicore computation is switched off.

When the parallel option is enabled with 1 (codeoptions.parallel = 1), the maximum
number of threads to be used is set as the maximum number of threads available to
OpenMP (max_number_of_threads = omp_get_max_threads()). Additionally, a runtime parame-
ter num_of_threads is created to control the number of threads in runtime. The allowed range
of values for the runtime parameter is [1, max_number_of_threads]. Leaving the parameter
unset or setting a value outside the allowed range will lead in execution with the maximum
number of threads (max_number_of_threads).

The maximum number of threads can also be set manually during code generation by set-
ting:

Matlab

Python

% <max_number_of_threads> larger than 1
codeoptions.parallel = <max_number_of_threads>;

395

FORCESPRO User Manual

<max_number_of_threads> larger than 1
codeoptions.parallel = <max_number_of_threads>

14.2 External parallelism

External parallelism can be enabled only on the level of the C interface (see High-level inter-
face and C interface: memory allocations). In order to execute multiple calls to the same
generated solver in parallel, the solver is required to be thread-safe. Thread-safety can be
ensured by setting the option

Matlab

Python

codeoptions.threadSafeStorage = 1;

codeoptions.threadSafeStorage = 1

The solver can be called in parallel by assigning an independent memory buffer to each
thread as in the following code snippet:

/* each of the NUM_THREADS threads must be assigned its own memory buffer */
char * mem[NUM_THREADS];
FORCESNLPsolver_mem * mem_handle[NUM_THREADS];

/* input & output for each of the NUM_SOLVERS solvers */
FORCESNLPsolver_params params[NUM_SOLVERS];
FORCESNLPsolver_info info[NUM_SOLVERS];
FORCESNLPsolver_output output[NUM_SOLVERS];
int exit_code[NUM_SOLVERS];

/* create memory buffer for each thread */
for (i=0; i<NUM_THREADS; i++)
{

mem[i] = malloc(mem_size);
mem_handle[i] = FORCESNLPsolver_external_mem(mem[i], i, mem_size);

}

/* parallel call to the solver using OpenMP */
#pragma omp parallel for
for (i_solver=0; i_solver<NUM_SOLVERS; i_solver++)
{

int i_thread = omp_get_thread_num();
exit_code[i_solver] = FORCESNLPsolver_solve(¶ms[i_solver], &output[i_solver],␣

→˓&info[i_solver], mem_handle[i_thread], ...);
}

/* free user-allocated memory */
for (i = 0; i < NUM_THREADS; i++)
{

free(mem[i]);
}

If you run multiple concurrent solvers and if you’re interested only in one solution, you can use
the real-time parameter solver_exit_external to terminate all other solvers from the thread
that converges fastest. See section Early-terminate solver for more information.

396 Chapter 14. Multicore parallelization

FORCESPRO User Manual

Important: Special care has to be taken when using solvemethod = 'SQP_NLP'with problem.
reinitialize = 0 or solvemethod = 'QP_FAST' with problem.warmstart = 1 in parallel because
the memory buffer stores the current state of the solver between consecutive calls. Therefore,
the memory buffers have to be allocated per solver and not per thread, so that there are
NUM_SOLVERS buffers.

Important: When using the code-generated integrators (see section Code-generated in-
tegrators) within a multithreaded environment, you will have to specify via the option nlp.
max_num_threads the maximum number of threads on which you wish to run the solver in
parallel. For instance, if running the solver on a maximum of 5 threads in parallel one would
set

Matlab

Python

codeoptions.nlp.max_num_threads = 5;

codeoptions.nlp.max_num_threads = 5

Note: Solvers with binary (Binary constraints) or integer variables (Mixed-integer nonlinear
solver) are not yet thread safe.

Alternatively, the internal memory interface (see Internal memory) also supports thread
safety, but with less flexibility and with a hard limit on the number of memory buffers (see Ta-
ble 13.1). This functionality is not covered here but you can get started by consulting the exam-
ple BasicExample_internal_mem_multithreading.c in the examples\StandaloneExecution folder
that comes with your client.

14.3 Combining external and internal parallelism

In order to combine external and internal parallelism on m internal threads and n external
threads (so that m*n threads are employed in total), you need to set the following code options:

Matlab

Python

codeoptions.parallel = m;
codeoptions.max_num_mem = n; % only for internal memory interface
codeoptions.nlp.max_num_threads = m*n; % only for code-generated integrators

codeoptions.parallel = m
codeoptions.max_num_mem = n # only for internal memory interface
codeoptions.nlp.max_num_threads = m*n # only for code-generated integrators

If these options are set inconsistently with the number of threads, the solver will exit with
exitflags -101 (for insufficient max_num_mem) or -102 (for insufficient max_num_threads).

In OpenMP, nested parallelism needs to be enabled. Depending on the compiler and
OpenMP version, one or both of the following library calls are required before calling the
solver:

Chapter 14. Multicore parallelization 397

FORCESPRO User Manual

omp_set_nested(1);
omp_set_max_active_levels(2);

Additionally, dynamic adjustment of the number of threads needs to be disabled by

omp_set_dynamic(0);

398 Chapter 14. Multicore parallelization

FORCESPRO User Manual

Chapter 15

Licensing

• Machine Identification

– Client Identification

– Solver Identification

• Static License

– System requirements for static license

– Generating solvers with static license

– Running solvers with static license

• License Files

– System requirements for license files

– Generating solvers with license files

– Generating license files

– Running solvers with license files

• Floating Licenses

– Floating Licenses Proxy

– System requirements for floating licenses

– Using the Floating Licenses Proxy

– Floating License Attributes

– Generating solvers with floating licenses

– Configure floating licenses during code generation

– Running solvers with floating licenses

15.1 Machine Identification

The FORCESPRO licensing system works by receiving unique identifiers from the machines
the software runs on and enabling the machines by activating the corresponding unique
identifiers. Activation of machines can be done by receiving the unique identifiers of the
machines using fingerprinting executables provided in the portal and adding those unique
identifiers on the portal.

399

FORCESPRO User Manual

For more information on machine activation see: https://my.embotech.com/readme

15.1.1 Client Identification

Machines running FORCESPRO clients are licensed using the machine’s username and the
machine’s unique identifier.

15.1.2 Solver Identification

Machines running FORCESPRO solvers are licensed using the machine’s unique identifier.

15.2 Static License

When generating a solver the license’s state on the portal (enabled machines and expiration)
is saved in the solver so that the solver can run on the enabled machines.

15.2.1 System requirements for static license

The requirement for static license checking is to have correct system clock settings (accu-
rately showing current time, compliant to UTC time).

15.2.2 Generating solvers with static license

Static license checking is automatically enabled on a generated solver.

15.2.3 Running solvers with static license

After generating a solver, you can move it to the running platform and build it with the rest
of your project.

15.3 License Files

License Files are used in order to enable solvers to run in machines that were not enabled
during the time of code generation or to enable solvers to run after a license renewal (that
happened after solver code generation).

15.3.1 System requirements for license files

The requirements for using license files are:

• A platform supporting I/O operations

• A platform with access to file system

• Correct system clock settings (accurately showing current time, compliant to UTC time)

• Using the MATLAB interface of FORCESPRO

400 Chapter 15. Licensing

https://my.embotech.com/readme

FORCESPRO User Manual

15.3.2 Generating solvers with license files

License file checking is automatically enabled on a generated solver (supposing the platform
supports it). The user has the option to select the name of the license file using the following
codeoption:

Matlab

Python

% Matlab
codeoptions.license.static_license_file_name = '<filename_without_extension>'; % no␣
→˓paths, only filename

% Python
codeoptions.license.static_license_file_name = '<filename_without_extension>' # no␣
→˓paths, only filename

Important: The license file name must be a valid variable name

Note: Until FORCESPRO 5.0.0, the name of the license file could be set using the option
codeoptions.license_file_name. This codeoption has been kept for backwards compatibility,
however, setting the new option will override it.

15.3.3 Generating license files

License files can be created by using the MATLAB function ForcesGetLicenseFile. This func-
tion can be called with the following (optional) arguments:

• license file name: Name to be given to created license file (without extension). Default
value: FORCESPRO

• server: FORCESPRO server to use to generate the license file. Default value: default
server used by client

For more information on function usage run: help ForcesGetLicenseFile in the MATLAB Com-
mand Window.

15.3.4 Running solvers with license files

After generating a solver, you can move it to the running platform and build it with the rest
of your project. After generating a license file, you can move it to your project folder.

When running a solver:

• The solver will read the license file and validate the license

• The license file needs to be in the working directory in which you execute your project
(usually the directory that contains the executable)

15.4 Floating Licenses

Floating Licenses are used when the system that is enabled for running solvers needs to fre-
quently change or is a virtualized environment (such as Docker or Virtualbox). The licensing

Chapter 15. Licensing 401

FORCESPRO User Manual

works by getting a temporary local lease from the floating license server in order to be able
to run a solver on a machine. The connection to the floating license server is performed via a
proxy server which receives the requests from the solvers, contacts the online floating license
server to receive the floating license and provides it to the solver.

15.4.1 Floating Licenses Proxy

The deployment scenarios running FORCESPRO solvers do not always include the provision
of an internet connection to the deployment machines. Instead, the deployment machines
are managed by a centralized mechanism. The Floating Licenses Proxy allows to use this
functionality for the provision of the FORCESPRO floating licenses. The Proxy can be set up
either as a standalone application or as a web server in a machine which has network ac-
cess with the deployment machines which will run the FORCESPRO solvers (without the
need of an internet connection). This machine will listen for requests from the FORCESPRO
solvers running in the deployment machines, perform the request on the online floating li-
cense server and finally return the acquired license leases to the FORCESPRO solvers. This
way, the only machine requiring an internet connection will be the one running the Proxy.
The solvers can be configured during code generation to which machine to connect to, in
order to access the Floating Licenses Proxy. The packages for the Floating Licenses Proxy can
be acquired in the Customer Portal in the Engineering Nodes view.

15.4.2 System requirements for floating licenses

The requirements for running the floating licenses proxy:

• A x86/x86_64 Windows or Linux platform

• An internet connection

• Correct system clock settings (accurately showing current time, compliant to UTC time)

• OS specific system or packages requirements can be found in the manual of the Floating
Licenses Proxy

The requirements for enabling solvers with floating licenses are:

• A x86/x86_64 Linux platform

• A network connection of the running platform to the machine running the floating li-
censes proxy

• Correct system clock settings (accurately showing current time, compliant to UTC time)

15.4.3 Using the Floating Licenses Proxy

The Floating Licenses Proxy can be run as a standalone application or as a web server. Once
run, no further actions are required on the Proxy’s side. The FORCESPRO solvers will connect
to it and receive the license leases to be validated for execution.

15.4.4 Floating License Attributes

Floating licenses are defined by the following two fields:

• Number of Licenses: The number of machines that can run solvers concurrently using
a floating license for a FORCESPRO user.

• Lease Time: The time for which a local lease is valid after it has been granted. Default
lease time is 10 minutes. Please contact support@embotech.com to change this.

402 Chapter 15. Licensing

mailto:support@embotech.com

FORCESPRO User Manual

15.4.5 Generating solvers with floating licenses

To enable floating licenses on a generated solver use the following codeoption:

Matlab

Python

% Matlab
codeoptions.license.use_floating_license = 1;

Python
codeoptions.license.use_floating_license = 1

And select the platform to use

Matlab

Python

% Matlab
codeoptions.platform = 'platform_name';

Python
codeoptions.platform = "platform_name"

Available platform options are:

• Gnu-x86

• Gnu-x86_64

• Docker-Gnu-x86

• Docker-Gnu-x86_64

Note: Until FORCESPRO 5.0.0, enabling floating licenses was done using the codeoption
codeoptions.useFloatingLicense. This codeoption has been kept for backwards compati-
bility, however, setting the new option will override it.

15.4.6 Configure floating licenses during code generation

During code generation, the following codeoptions are available to configure the floating
license check:

• codeoptions.license.floating_license_server: Selects the hostname or ip address of
the machine which is running the floating license proxy for the solver to connect to. The
floating license server must be a valid uri. Default value is localhost

• codeoptions.license.floating_license_port: Selects the port of the machine which is
running the floating license proxy for the solver to connect to. The floating license server
must be a valid port number. Default value is 5000

• codeoptions.license.floating_license_file_name: Sets the name for the local file cre-
ated for the floating license. The floating license file name must be a valid variable name.
Default value is the solvername

• codeoptions.license.floating_license_retries: Sets the number of retries to connect to
the floating license server in case a connection fails. Default value is 3

Chapter 15. Licensing 403

FORCESPRO User Manual

Note: If the FORCESPRO solver is run in a docker container and the Floating Licenses
Proxy is run in the host of the same machine, in order for the solver to access the proxy
codeoptions.license.floating_license_server should be set as ‘host.docker.internal’.
In a Linux host, the docker container needs to provide access to the host for
host.docker.internal by using the runtime option –add-host=. Depending on the docker
version and the setup, the option value would be: host.docker.internal:host-gateway
(i.e. –add-host=host.docker.internal:host-gateway), host.docker.internal:172.17.0.1 or
host.docker.internal:<bridge-gateway-ip> where <bridge-gateway-ip> is the IP of the
gateway of the bridge network to the host. In a Dockerfile, the value for host.docker.internal
can be added under the entry extra_hosts:.

15.4.7 Running solvers with floating licenses

After generating a solver, you can move it to the running platform and build it with the rest
of your project.

When running a solver:

• The solver will communicate with the Floating Licenses Proxy

• The Proxy will perform the request on the online floating license server

• If the number of enabled machines has not exceeded the license limits, a license lease
will be returned

• If a lease had already been granted for a machine (and is still valid) the license will be
extended to match the set lease time and will be returned

• The Proxy will return the accepted license lease to the FORCESPRO solver

• The solver will save the lease locally and run

• If a valid local lease already exists the solver will run without communicating with the
server

When the floating license check is enabled, the run-time parameter re-
ceive_floating_license is available. Setting it to 1 will cause the solver to run only the
license check, acquire the floating license and return. This can be used to acquire the
floating license early and avoid connecting to the floating license server in subsequent
executions when running the solver initialized with the problem.

404 Chapter 15. Licensing

FORCESPRO User Manual

Chapter 16

Autotuner

• Autotuner Options

• Collecting Tuning Data

• Validation

The FORCESPRO autotuner is a tool for “tuning” a FORCESPRO solver in an automated way,
in order to ensure both robustness and fast convergence on a specific application. Often this
means choosing a set of so-called “hyper-parameters” which tailor the algorithm to a specific
application.

Important: Currently the FORCESPRO autotuner is only compatible with the SQP Fast algo-
rithm (see Different SQP variants) and the QP Fast algorithm (see The QP_FAST algorithm).

Autotuning a FORCESPRO solver requires setting several tuning options. The tuning options
object is constructed by calling ForcesAutotuneOptions which takes as an optional input a cell
array of problems instances (here called problems) which are compatible with the generated
solver. I.e. each element of the cell array is a struct containing the run-time parameters for a
solver:

Matlab

Python

tuningoptions = ForcesAutotuneOptions(problems);

not supported

See Collecting Tuning Data for an explanation of how to collect tuning data (problems)
and see section Autotuner Options for which options can be specified through the
ForcesAutotuneOptions object. Once the tuning options have been specified a QP_FAST solver
(see Tuning the QP_FAST algorithm) can be generated by calling:

Matlab

Python

ForcesGenerateQpFastSolver(stages,params,codeoptions,tuningoptions,outputs);

not supported

405

FORCESPRO User Manual

and a SQP solver using the fast QP solver (see Different SQP variants) can be generated as
follows:

Matlab

Python

ForcesGenerateSqpFastSolver(model, codeoptions, tuningoptions, outputs);

not supported

16.1 Autotuner Options

Via the ForcesAutotuneOptions object, the following options can be set:

• TuningSeed: Set equal to a non-negative integer to fix the seed in the random number
generator used for the FORCESPRO autotuner.

• TuningMinutes: Number of minutes the tuning should last.

• TuningIterations: Number of iterations the autotuner should last (only relevant if
TuningMinutes = 0). Must be a positive integer.

• FailureTolerance: Denotes the percentage of problems which are allowed to fail to con-
verge for a tuning to be acceptable. E.g. if FailureTolerance = 0.05 then 5% of problems
are allowed to fail to converge. Normally, this value should be kept to 0.

• ComparisonOutputs: If non-empty, the autotuner will attempt to find a tuning for which
the solver produces a solution which is as close to the ones specified here. I.e. the
ComparisonOutputs field must be a cell-array of the same length as the cell-array problems
passed in the constructor and each element must be of the same type and size as the
output which the solver produces.

• ComparisonObjectives: If non-empty, the autotuner will attempt to find a tuning for
which the objective value at the solution produced by the solver matches the one as-
signed here. In particular, if non-empty, ComparisonObjectives must be a cell-array of the
same length as the cell-array problems passed in the constructor.

Several of these options can also be set via the following “setter” methods

• setTuningGoal: Choose what to tune the solver for. The input to this function must be
"speed", "control" or "balanced".

• setTuningSeed: Set TuningSeed.

• setTuningMinutes: Set TuningMinutes.

• setTuningIterations: Set TuningIterations.

16.2 Collecting Tuning Data

The main step in tuning a solver is to collect the tuning data/problems which must be speci-
fied directly in the constructor to the ForcesAutotuneOptions class. The standard way to do this
is by running one or more simulations with a solver which does not require tuning. In order
to see the how to generate such a solver, consult section Tuning the QP_FAST algorithm for
the QP Fast solver and Tuning the SQP Fast solver for the SQP Fast solver.

406 Chapter 16. Autotuner

FORCESPRO User Manual

16.3 Validation

The FORCESPRO autotuning tool also allows the user to automatically validate the results
the autotuner produces. The purpose of the validation is to check that the tuning found by
the autotuner provides a solver which meets the requirements (be it speed or control per-
formance) for a given application. The validation has a default configuration, but can also be
configured by setting the following ForcesAutotuneOptions members:

• ValidationMaxObjTol: Specifies the maximum relative deviation in the optimal objective
function value allowed to pass validation of the tuned solver. 0.1 means 10%. Must be
a non-negative floating point number. The default value is 0.0, which deactivates the
check.

• ValidationAvgObjTol: Specifies the average relative deviation in the optimal objective
function value allowed to pass validation of the tuned solver. 0.1 means 10%. Must be a
non-negative floating point number. The default value is 0.1.

• ValidationMaxControlTol: Specifies the maximum relative deviation in the first optimal
control input (2-norm) allowed to pass validation of the tuned solver. 0.1 means 10%.
Must be a non-negative floating point number. The default value is 0.0, which deacti-
vates the check.

• ValidationAvgControlTol: Specifies the average relative deviation in the first optimal con-
trol input (2-norm) allowed to pass validation of the tuned solver. 0.1 means 10%. Must
be a non-negative floating point number. The default value is 0.1, which deactivates the
check.

• ValidationControlOutputName: Specifies the name of the output at the first stage used to
validate the control input accuracy.

• ValidationControlOutputIdx: Specifies the indices of the variables corresponding to the
control inputs at the first stage used to validate the control input accuracy.

Instead of setting these validations directly, one can configure them through the following
methods:

• setValidationControlOutput: Specify the control inputs of the first stage. This method
takes ValidationControlOutputName as the first input and ValidationControlOutputIdx as
a second input.

• disableObjValidation: Completely disable validation of the objective function. This
method takes no inputs.

• disableControlValidation: Completely disable the validation of the control performance.
This method takes no inputs.

• disableValidation. Completely disable validation. This method takes no inputs.

Chapter 16. Autotuner 407

FORCESPRO User Manual

408 Chapter 16. Autotuner

FORCESPRO User Manual

Chapter 17

Solver Options

• Default options

• General options

– Solver name

– Print level

– Maximum number of iterations

– Parametric number of iterations

– Compiler optimization level

– Measure Computation time

– Solver Timeout

– Early-terminate solver

– Options related to multicore parallelization

– Datatypes

– Code generation server

– Enforcing solver regeneration

– Overwriting existing solvers

– Skipping the Build of Simulink S-function

– Solver info in Simulink block

– Skipping automatic cleanup

– MATLAB network communications

– Python network communications

– Target platform

– Tips for solving QPs in single precision

– MISRA 2012 compliance

– Optimizing code size

– Optimizing Linear Algebra Operations

– Dump problem formulation and data

– Identifying FORCESPRO solver

409

FORCESPRO User Manual

• High-level interface options

– Integrators

– Accuracy requirements

– Barrier strategy

– Hessian approximation

– Line search settings

– Regularization

– Linear system solver

– Automatic differentiation tool

– Automatic differentiation expression class

– Re-use of callback code

– Safety checks

• Convex branch-and-bound options

• Solve methods

– Primal-Dual Interior-Point Method

– Alternating Directions Method of Multipliers

– Dual Fast Gradient Method

– Primal Fast Gradient Method

FORCESPRO expects a set of solver options that help to customize the generated solver code.
Section Default options describes how to obtain a set of default options, while further cus-
tomizations are described in the remaining sections.

In the documentation below, we assume that you have created this struct and named it
codeoptions.

Note: For the low-level interface in Python, the codeoptions struct has to be an element of
the stages struct.

17.1 Default options

Default solver options can be loaded by giving a name to the solver with the following com-
mand

Matlab

Python

codeoptions = getOptions('solvername');

stages.codeoptions = forcespro.CodeOptions('solvername') # for the low-level interface
codeoptions = forcespro.CodeOptions('solvername') # for the high-level interface

This function is very generic and does not tailor the default options to the algorithm used. It
is therefore recommended to use the following function instead (which has been introduce
with release 6.0.0):

Matlab

410 Chapter 17. Solver Options

FORCESPRO User Manual

Python

codeoptions = ForcesGetDefaultOptions('solvername','algorithm','floattype');

stages.codeoptions = forcespro.CodeOptions() # for the low-level interface
stages.codeoptions.use_default('solvername', 'algorithm', 'floattype')
codeoptions = forcespro.CodeOptions() # for the high-level interface
codeoptions.use_default('solvername', 'algorithm', 'floattype')

In addition to the solver name, this function expects two more input arguments:

• a string specifying the algorithm, which can take any value listed in Table 17.14 or
'SQP_NLP_fast' or 'QP_FAST' to denote the SQP Fast (see Different SQP variants) or QP
Fast algorithm (see The QP_FAST algorithm), respectively;

• a string 'floattype', which currently can be set to either 'double' or 'float' (see Table
17.5).

17.2 General options

We will first discuss how to change several options that are valid for all the FORCESPRO in-
terfaces.

17.2.1 Solver name

The name of the solver will be used to name variables, functions, but also the MEX file and
associated help file. This helps you to use multiple solvers generated by FORCESPRO within
the same software project or Simulink model. To set the name of the solver use:

Matlab

Python

codeoptions.name = 'solvername';

codeoptions.name = 'solvername'

Alternatively, you can directly name the solver when generating the options struct by calling:

Matlab

Python

codeoptions = getOptions('solvername');

stages.codeoptions = forcespro.CodeOptions('solvername') # for the low-level interface
codeoptions = forcespro.CodeOptions('solvername') # for the high-level interface

17.2.2 Print level

To control the amount of information the generated solver prints to the console, set the field
printlevel as outlined in Table 17.1.

Chapter 17. Solver Options 411

FORCESPRO User Manual

Table 17.1: Print level options
printlevel Result
0 No output will be written.
1 Summary line after each solve.
2 (default) Summary after each iteration of solver.

Important: printlevel should always be set to 0 when recording performance timings or
when deploying the code on an autonomous embedded system.

17.2.3 Maximum number of iterations

To set the maximum number of iterations of the generated solver, use:

Matlab

Python

codeoptions.maxit = 200;

codeoptions.maxit = 200

The default maximum number of iterations for all solvers provided by FORCESPRO is set to
200.

17.2.4 Parametric number of iterations

The maximum number of iterations of the generated solver can be made parametric with
the following codeoption:

Matlab

Python

codeoptions.parametric_iterations = 1;

codeoptions.parametric_iterations = 1

This will generate the runtime parameter maxit which can be provided as input to the solver.
The runtime parameter needs to be initialized with a value in the range (0, codeoptions.
maxit] (i.e. the runtime iterations parameter needs to be set lower or equal to the hardcoded
maximum number of iterations).

Note: The parametric number of iterations feature is currently not available for the SQP solvers.

17.2.5 Compiler optimization level

The compiler optimization level can be varied by changing the field optlevel from 0 to 3 (de-
fault):

Matlab

Python

412 Chapter 17. Solver Options

FORCESPRO User Manual

codeoptions.optlevel = 0;

codeoptions.optlevel = 0

Important: It is recommended to set optlevel to 0 during prototyping to evaluate the func-
tionality of the solver without long compilation times. Then set it back to 3 when generating
code for deployment or timing measurements.

17.2.6 Measure Computation time

You can measure the time used for executing the generated code by using:

Matlab

Python

codeoptions.timing = 1;

codeoptions.timing = 1

By default the execution time is measured. The execution time can be accessed in the field
solvetime of the information structure returned by the solver. In addition, the execution time
is printed in the console if the flag printlevel is greater than 0.

Important: Setting timing on will introduce a dependency on libraries used for accessing
the system clock. Timing should be turned off when deploying the code on an autonomous
embedded system.

By default when choosing to generate solvers for target platforms, timing is disabled. You
can manually enable timing on embedded platforms by using:

Matlab

Python

codeoptions.embedded_timing = 1;

codeoptions.embedded_timing = 1

17.2.7 Solver Timeout

Introduction

If you have a critical application which needs to run in a specific timeframe then it’s useful to
set a timeout for the solver in order to control its execution time.

The timeout works by checking the execution time of each iteration of the solver and making
an estimate for next iterations as:

next_iteration_time = timeout_estimate_coeff * max_iteration_time

where:

• max_iteration_time is the execution time of the currently slowest iteration

Chapter 17. Solver Options 413

FORCESPRO User Manual

• timeout_estimate_coeff is a coefficient used to make the estimate more conservative or
forgiving. Its default value is 1.20

Usage

To enable the solver timeout you can use the following codeoption:

Matlab

Python

% solver_timeout can take values 0-2
codeoptions.solver_timeout = 1;

solver_timeout can take values 0-2
codeoptions.solver_timeout = 1

Setting the option to 1 will enable the timeout and provide the floating point variable
solver_timeout as a runtime parameter. Setting the option to 2 will additionally provide the
floating point variable timeout_estimate_coeff as a runtime parameter.

Important: For MINLP solvers a timeout is automatically enabled therefore there’s no
need to use the above codeoptions. For more details on how to use it please check section
Mixed-integer nonlinear solver.

Not setting the runtime parameters after enabling them with code generation will result in
them taking their default values. The default values for the runtime parameters are:

• For solver_timeout it’s -1.0 which results in timeout being disabled

• For timeout_estimate_coeff it’s 1.20

Important: Since an estimation is required for the timeout, the solvers will always perform
the first iteration (only exception are SQP methods, check the following section SQP inner QP
timeout).

SQP inner QP timeout

With the SQP_NLP solve method the QP solved as part of the SQP iteration is also set to
timeout based on the remaining time available to the SQP solver. The QP timeout can be
useful in cases where the inner QP takes longer time to execute than expected and could
otherwise cause the SQP solver to miss the timeout mark (in which case the SQP solver would
time out at the start of the next iteration). If the QP times out, the SQP solver will return with
the solution from the previous iteration.

If it is deemed more important to solve the whole QP and get a more updated solution rather
than having a strict timeout, the inner qp timeout can be disabled with the following codeop-
tion:

Matlab

Python

% this option is relevant only if codeoptions.solver_timeout is enabled
codeoptions.sqp_nlp.qp_timeout = 0;

414 Chapter 17. Solver Options

FORCESPRO User Manual

this option is relevant only if codeoptions.solver_timeout is enabled
codeoptions.sqp_nlp.qp_timeout = 0

Return Value

When solver timeout is enabled, two additional exitflags are available for the user:

Table 17.2: Timeout exitflags
Exitflag Name Value Description
TIMEOUT_<SOLVERNAME> 2 The solver timed out and returned

the solution found up to the exe-
cuted iteration

INVALID_TIMEOUT_<SOLVERNAME> -12 The timeout provided was too
small to even start a single itera-
tion

If a normal timeout is returned, the outputs of the solver will contain the solution found up to
the executed iteration. If an invalid timeout is returned, the outputs of the solver will contain
the initialization of the solver (or the previous solution if it exists for SQPs).

17.2.8 Early-terminate solver

You can terminate a solver during execution from C based on an external event by setting the
option

Matlab

Python

codeoptions.solver_exit_external = 1;

codeoptions.solver_exit_external = 1

Setting the option to 1 will enable the external termination by providing a runtime parameter
solver_exit_external which can take 2 values:

Table 17.3: solver_exit_external parameter
Value of solver_exit_external Description
0 solver runs normally
1 solver terminates at the end of the current iteration

When a solver is early-terminated, it always finishes the current iteration and returns its solu-
tion.

A solver that was early-terminated before convergence returns a dedicated exitflag:

Table 17.4: Early-termination exitflag
Exitflag Name Value Description
EXIT_EXTERNAL_<SOLVERNAME> 3 The solver was terminated because solver_exit_external = 1 was set externally

Note: To enable external and asynchronous update of the variable solver_exit_external,
it is declared as volatile (ensuring visibility) and of type sig_atomic_t (ensuring atomicity). If
you use this parameter within a multithreaded environment to terminate a solver on another

Chapter 17. Solver Options 415

FORCESPRO User Manual

thread, please note that this assumes a cache coherent architecture to work reliably as the
volatile qualifier itself does not guarantee thread safety.

17.2.9 Options related to multicore parallelization

Internal parallization of the solver using OpenMP can be switched on by using

Matlab

Python

codeoptions.parallel = 1;

codeoptions.parallel = 1

For how to control the number of threads, please refer to section Internal parallelism.

You can also parallelize over multiple solver calls (external parallelism). For that to work, ensure
that the generated solver is thread safe by setting the option

Matlab

Python

codeoptions.threadSafeStorage = 1;

codeoptions.threadSafeStorage = 1

The use of external parallelism is described in more detail in section External parallelism.

17.2.10 Datatypes

The type of variables can be changed by setting the field floattype as outlined in Table 17.5.
This will effect all floating point variables used inside the solver and the callbacks generated
by the AD tool.

Table 17.5: Data type options
floattype Decimation Width (bits) Supported algorithms
'double' (default) 64 bit Floating point PDIP_NLP, SQP_NLP, PDIP, QP_FAST, ADMM, DFG, FG
'float' 32 bit Floating point SQP_NLP, PDIP, QP_FAST, ADMM, DFG, FG
'int' 32 bit Fixed point ADMM, DFG, FG
'short' 16 bit Fixed point ADMM, DFG, FG

Important: Unless running on a resource-constrained platform, we recommend using dou-
ble precision floating point arithmetic to avoid problems in the solver. If single precision float-
ing point has to be used, reduce the required tolerances on the solver accordingly by a power
of two (i.e. from 1E-6 to 1E-3).

When running the solver in double precision arithmetic, it is possible to only use single pre-
cision arithmetic for evaluating the AD tool callbacks. This can be done by setting the field
callback_floattype; see Table 17.6 and section Single precision callbacks for details.

416 Chapter 17. Solver Options

FORCESPRO User Manual

Table 17.6: Callback data type options
floattype Decimation Width (bits) Supported algorithms
'double' (default) 64 bit Floating point PDIP_NLP, SQP_NLP
'float' 32 bit Floating point PDIP_NLP, SQP_NLP

17.2.11 Code generation server

By default, code generation requests are routed to embotech’s main FORCESPRO server
(https://forces.embotech.com) which always provides the most up-to-date release of FORCE-
SPRO. To send a code generation request to a custom server, for example when FORCESPRO
is used in an enterprise setting, set the following field to an appropriate value:

Matlab

Python

codeoptions.server = 'https://yourforcesserver.com:1234';

codeoptions.server = 'https://yourforcesserver.com:1234'

17.2.12 Enforcing solver regeneration

In order to avoid unnecessary calls to the code-generation server, FORCESPRO internally
computes a hash of your problem formulation and codeoptions. If this hash is identical to
that of an already generated solver, the existing one is reused. In situations where this is not
desired, hashing can be disabled as follows:

Matlab

Python

codeoptions.nohash = 1;

codeoptions.nohash = 1

In that case, the codegen server is always contacted to re-generate a new solver.

17.2.13 Overwriting existing solvers

When a new solver is generated with the same name as an existing solver one can control
the overwriting behaviour by setting the field overwrite as outlined in Table 17.7.

Table 17.7: Overwrite existing solver options
overwrite Result
0 Never overwrite.
1 Always overwrite.
2 (default) Ask to overwrite.

17.2.14 Skipping the Build of Simulink S-function

By default, after code generation, the Simulink block is compiled, which may take a very long
time for large problems on Windows systems. If you will not use the Simulink block, or want
to build it later yourself, you can disable automatic builds by using the following option:

Chapter 17. Solver Options 417

https://forces.embotech.com

FORCESPRO User Manual

Matlab

Python

codeoptions.BuildSimulinkBlock = 0;

does not take effect in Python

17.2.15 Solver info in Simulink block

FORCESPRO always generates a Simulink block encapsulating the generated solver. You can
add output ports to the Simulink block to obtain the solver exit flag and other solver informa-
tion (number of iterations, solve time in seconds, value of the objective function) by setting:

Matlab

Python

codeoptions.showinfo = 1;

codeoptions.showinfo = 1

By default these ports are not present in the Simulink block.

17.2.16 Skipping automatic cleanup

FORCESPRO automatically cleans up some of the files that it generates during the code gen-
eration, but which are usually not needed any more after building the MEX file. In particu-
lar, some intermediate CasADi generated files are deleted. If you would like to prevent any
cleanup by FORCES, set the option:

Matlab

Python

codeoptions.cleanup = 0;

codeoptions.cleanup = 0

The default value is 1 (true).

Important: The library or object files generated by FORCESPRO contain only the solver itself.
To retain the CasADi generated files for function evaluations, switch off automatic cleanup as
shown above. This is needed if you want to use the solver within another software project,
and need to link to it.

17.2.17 MATLAB network communications

From version 5.0.0, the MATLAB client will perform connections to a REST interface for com-
municating with the FORCESPRO codegen server.

To revert to an old method, either set:

418 Chapter 17. Solver Options

FORCESPRO User Manual

% WSDL connection
codeoptions.server_connection = ForcesWeb.ServerConnections.WSDL;
% WSDL legacy connection
codeoptions.server_connection = ForcesWeb.ServerConnections.WSDL_legacy;

or change it by editing the FORCESPRO client. To do so, please edit the +ForcesWeb/
defaultServerConnection.m function so that it returns the selected ForcesWeb.
ServerConnections value.

Important: Setting the codeoptions.server_connection option will override the value in
+ForcesWeb/defaultServerConnection.m

The connections are performed over HTTPS. For the server verification, a check via SSL cer-
tificates is performed. To perform this verification, a client certificate is needed on the client
side. This certificate, if missing, can be acquired by accessing the FORCESPRO server via a
browser (the browser will have the option to download the client certificate – the certificate
with the entire chain of certificates should be selected). MATLAB stores the client certificates
to be used for this verification in an installation specific file. In case this file cannot be ac-
cessed/changed due to admin rights, it is possible to manually select the files that will be
checked for the certificates for the FORCESPRO connections. This can be done by editing
the file: +ForcesWeb/SSLCertificateFiles.m in the FORCESPRO client. This file contains the
entries:

% path to certificates file that contains client certificate to authenticate for␣
→˓codegen server. To use default set to empty
codegen = '';
% path to certificates file that contains client certificate to authenticate for␣
→˓storage server. To use default set to empty
storage = '';

The user can download the certificates with the entire chain from the codegen server (by
default https://forces.embotech.com but also depends on the server the user has selected)
and from the storage server (https://forcesblob.embotech.com) and then assign the path to
those certificate files to the file above. This way, MATLAB will use those files for authentication
instead of the default file.

Note: In most systems, the default certificate file contains the most common certificates.
Therefore, for most users these certificate changes are not required. The above file is provided
for cases of strict IT configurations in which certificates need to be specifically enabled for a
successful verification.

17.2.18 Python network communications

From version 5.0.0, the Python client will perform connections to a REST interface for com-
municating with the FORCESPRO codegen server.

To revert to the old method, either set:

WSDL connection
codeoptions.server_connection = WSDL

or change it by editing the FORCESPRO client. To do so, please edit the
default_forcespro_connection.py function so that it returns the selected server_connections
value.

Chapter 17. Solver Options 419

https://forces.embotech.com
https://forcesblob.embotech.com

FORCESPRO User Manual

Important: Setting the codeoptions.server_connection option will override the value in
default_forcespro_connection.py

From version 4.3.1, the Python client supports connections to the FORCESPRO codegen
server through a proxy.

The file forcespro_proxy.py exists in the FORCESPRO client folder in order to set the configu-
ration for the proxy. The format of the file is as follows:

host of the proxy. Can be an IP address ("x.x.x.x") or a DNS record. Set to empty␣
→˓to not use a proxy
host=""
port number of proxy to connect to. To use default set to 0
port=8888
Protocol to connect to the proxy (http or https). To use default set to empty
protocol="http"
Username with which to connect to the proxy. To not use a username set to empty
username="user"
Password with which to connect to the proxy. To not use a password set to empty
password="pass"

Note: By default the file forcespro_proxy.py has an empty host entry so that no proxy is used
unless set.

The connections are performed over HTTPS. For the server verification, a check via SSL cer-
tificates is performed. To perform this verification, a client certificate is needed on the client
side. This certificate, if missing, can be acquired by accessing the FORCESPRO server via a
browser (the browser will have the option to download the client certificate – the certificate
with the entire chain of certificates should be selected). Python reads a system specific file
to select the client certificates to be used for this verification. In case this file cannot be ac-
cessed/changed due to admin rights, it is possible to manually select the files that will be
checked for the certificates for the FORCESPRO connections. This can be done by editing
the file: forcespro_certificates.py in the FORCESPRO client. This file contains the entries:

path to certificates file that contains client certificate to authenticate for␣
→˓codegen server (path separator on Windows is "\\"). To use default set to empty
codegen=""
path to certificates file that contains client certificate to authenticate for␣
→˓storage (path separator on Windows is "\\"). To use default set to empty
storage=""

The user can download the certificates with the entire chain from the codegen server (by
default https://forces.embotech.com but also depends on the server the user has selected)
and from the storage server (https://forcesblob.embotech.com) and then assign the path to
those certificate files to the file above. This way, Python will use those files for authentication
instead of the default file.

Note: In most systems, the default certificate file contains the most common certificates.
Therefore, for most users these certificate changes are not required. The above file is provided
for cases of strict IT configurations in which certificates need to be specifically enabled for a
successful verification.

420 Chapter 17. Solver Options

https://forces.embotech.com
https://forcesblob.embotech.com

FORCESPRO User Manual

17.2.19 Target platform

As a default option, FORCESPRO generates code for simulation on the host platform. To ob-
tain code for deployment on a target embedded platform, set the field platform to the ap-
propriate value. The platforms currently supported by FORCESPRO are given in Table 17.8. In
order to acquire licenses to use a specific platform, licenses can be requested on the portal
by selecting the platform naming stated in the Portal Selection.

Table 17.8: Target platforms supported by FORCESPRO
platform Description Portal Selection
'Generic' (default) For the architecture of the

host platform.
'x86_64' (Engineering
Node)

'x86_64' For x86_64 based 64-bit
platforms (detected OS).

'x86_64'

'x86' For x86 based 32-bit plat-
forms (detected OS).

'x86'

'Win-x86_64' For Windows x86_64 based
64-bit platforms (supports
Microsoft/Intel compiler).

'x86_64'

'Win-x86' For Windows x86 based 32-
bit platforms (supports Mi-
crosoft/Intel compiler).

'x86'

'Win-MinGW-x86_64' For Windows x86_64 based
64-bit platforms (supports
MinGW compiler).

'x86_64'

'Win-MinGW-x86' For Windows x86 based
32-bit platforms (supports
MinGW compiler).

'x86'

'Mac-x86_64' For Mac x86_64 based
64-bit platforms (supports
GCC/Clang compiler).

'x86_64'

'Gnu-x86_64' For Linux x86_64 based 64-
bit platforms (supports GCC
compiler).

'x86_64'

'Gnu-x86' For Linux x86 based 32-bit
platforms (supports GCC
compiler).

'x86'

'Docker-Gnu-x86_64' For Linux x86_64 based
64-bit platforms on Docker
(supports GCC compiler).

'Docker-Gnu-x86_64'

'Docker-Gnu-x86' For Linux x86 based 32-bit
platforms on Docker (sup-
ports GCC compiler).

'Docker-Gnu-x86'

'ARM-Generic' For ARM Cortex 32-bit pro-
cessors (Gnueabih machine
type).

'ARM-Generic-Gnu'

'ARM-Generic64' For ARM Cortex 64-bit pro-
cessors (Aarch machine
type).

'ARM-Generic64-Gnu'

'Integrity-ARM32' For ARM Cortex 32-bit pro-
cessors using the Integrity
toolchain.

'Integrity-ARM32'

'Integrity-ARM64' For ARM Cortex 64-bit pro-
cessors using the Integrity
toolchain.

'Integrity-ARM64'

continues on next page

Chapter 17. Solver Options 421

FORCESPRO User Manual

Table 17.8 – continued from previous page
platform Description Portal Selection
'ARM Cortex-M3' For ARM Cortex M3 32-bit

processors.
'ARM-Cortex-M3'

'ARM-Cortex-M4-NOFPU' For the ARM Cortex M4
32-bit processors without a
floating-point unit.

'ARM-Cortex-M4'

'ARM-Cortex-M4' For the ARM Cortex M4
32-bit processors with a
floating-point unit.

'ARM-Cortex-M4'

'ARM-Cortex-A7' For the ARM Cortex A7 32-bit
processors (Gnueabih ma-
chine type).

'ARM-Cortex-A7'

'ARM-Cortex-A8' For the ARM Cortex A8
32-bit processors (Gnueabih
machine type).

'ARM-Cortex-A8'

'ARM-Cortex-A9' For the ARM Cortex A9
32-bit processors (Gnueabih
machine type).

'ARM-Cortex-A9'

'ARM-Cortex-A15' For the ARM Cortex A15
32-bit processors (Gnueabih
machine type).

'ARM-Cortex-A15'

'ARM-Cortex-A53' For the ARM Cortex A53
64-bit processors (Gnueabih
machine type).

'ARM-Cortex-A53'

'ARM-Cortex-A72' For the ARM Cortex A72
64-bit processors (Gnueabih
machine type).

'ARM-Cortex-A72'

'TI-Cortex-A15' For the ARM Cortex A15
32-bit processors (Gnueabih
machine type).

'TI-Cortex-A15'

'NVIDIA-Cortex-A57' For the NVIDIA Cortex A57
64-bit processors (Aarch
machine type).

'NVIDIA-Cortex-A57'

'AARCH-Cortex-A53' For the ARM Cortex A53 64-
bit processors (Aarch ma-
chine type).

'AARCH-Cortex-A53'

'AARCH-Cortex-A57' For the ARM Cortex A57 64-
bit processors (Aarch ma-
chine type).

'AARCH-Cortex-A57'

'AARCH-Cortex-A72' For the ARM Cortex A72 64-
bit processors (Aarch ma-
chine type).

'AARCH-Cortex-A72'

'PowerPC' For 32-bit PowerPC based
platforms (supports GCC
compiler).

'PowerPC-Gnu'

'PowerPC64' For 64-bit PowerPC based
platforms (supports GCC
compiler).

'PowerPC64-Gnu'

'MinGW32' For Windows x86 based
32-bit platforms (supports
MinGW compiler).

'x86'

'MinGW64' For Windows x86_64 based
64-bit platforms (supports
MinGW compiler).

'x86_64'

continues on next page

422 Chapter 17. Solver Options

FORCESPRO User Manual

Table 17.8 – continued from previous page
platform Description Portal Selection
'dSPACE-MABII' For the dSPACE MicroAuto-

Box II real-time system (sup-
ports Microtec compiler).

'dSPACE-MABII-Microtec'

'dSPACE-MABIII' For the dSPACE MicroAu-
toBox III real-time system
(supports Gcc compiler).

'dSPACE-MABIII-Gcc'

'dSPACE-MABXII' For the dSPACE MicroAuto-
Box II real-time system (sup-
ports Microtec compiler).

'dSPACE-MABII-Microtec'

'dSPACE-MABXIII' For the dSPACE MicroAu-
toBox III real-time system
(supports Gcc compiler).

'dSPACE-MABIII-Gcc'

'dSPACE-AutoBox' For the dSPACE AutoBox
real-time system (supports
Gcc compiler).

'dSPACE-AutoBox-Gcc'

'dSPACE-MicroLabBox' For the dSPACE MicroLab-
Box real-time system (sup-
ports Gcc compiler).

'dSPACE-MicroLabBox-Gcc'

'dSPACE-SCALEXIO' For the dSPACE SCALEXIO
real-time system (supports
Gcc compiler).

'dSPACE-SCALEXIO-Gcc'

'Speedgoat-x86' For Speedgoat 32-bit real-
time platforms (supports
Microsoft compiler and
mainly MATLAB Releases
2018b up to R2020a).

'Speedgoat-x86'

'Speedgoat-x64' For Speedgoat 64-bit real-
time platforms (supports
Microsoft compiler and
mainly MATLAB Releases
2018b up to R2020a).

'Speedgoat-x64'

'Speedgoat-QNX' For Speedgoat 64-bit real-
time platforms (supports
MATLAB Releases 2020b
onwards).

'Speedgoat-QNX'

'Speedgoat-Legacy-x86' For Speedgoat Mobile 32-bit
real-time platforms (sup-
ports Microsoft compiler
and Matlab Releases 2018a
and earlier).

'Speedgoat-x86'

'NI-cRIO' For National Instruments
compactRIO Linux RTOS
platforms (supports NILRT
Gcc compiler).

'NI-cRIO'

'AURIX' For Infineon AURIX plat-
forms.

on special request

'IAtomE680_Bachmann' For Bachmann PLC plat-
forms (supports VxWorks
compiler).

'IAtomE680-VxWorks'

Note: If a solver for another platform is requested, FORCESPRO will still provide the simula-
tion interfaces for the 'Generic' host platform to enable users to run simulations.

Chapter 17. Solver Options 423

FORCESPRO User Manual

Cross compilation

To generate code for other operating systems different from the host platform, set the appro-
priate flag from the following list to 1:

codeoptions.win
codeoptions.mac
codeoptions.gnu

Note that this will only affect the target platform. Interfaces for the host platform will be
automatically built.

Mac compilation

When compiling for mac platforms it’s possible to select the compiler to be used for the
web compilation. Select from the available values gcc (default) and clang with the following
codeoption:

Matlab

Python

codeoptions.maccompiler = 'gcc'; % or 'clang'

codeoptions.maccompiler = 'gcc' # or 'clang'

SIMD instructions

On x86-based host platforms, one can enable the sse field to accelerate the execution of the
solver

Matlab

Python

codeoptions.sse = 1;

codeoptions.sse = 1

On x86-based host platforms, one can also add the avx field to significantly accelerate the
compilation and execution of the convex solver, from version 1.9.0,

Matlab

Python

codeoptions.avx = 1;

codeoptions.avx = 1

Note: Currently when options avx and blckMatrices are enabled simultaneously,
blckMatrices is automatically disabled.

Note: When sparse parameters are present in the model, the options avx and neon are auto-
matically set to zero.

424 Chapter 17. Solver Options

FORCESPRO User Manual

Depending on the host platform, avx may be automatically enabled. If the machine on which
the solver is to be run does not support AVX and the message “Illegal Instruction” is returned
at run-time, one can explicitly disable avx by setting:

Matlab

Python

codeoptions.avx = -1;

codeoptions.avx = -1

If the host platform supports AVX, but the user prefers not to have AVX intrinsics in the gen-
erated code, one can also keep the default option value of the solver:

Matlab

Python

codeoptions.avx = 0;

codeoptions.avx = 0

On ‘NVIDIA-Cortex-A57’, ‘AARCH-Cortex-A53’, ‘AARCH-Cortex-A57’ and ‘AARCH-Cortex-A72’
target platforms, one can also enable the field neon in order to accelerate the execution of
the convex solver. From version 1.9.0, the typical behaviour is that the host platform gets
vectorized code based on AVX intrinsics when avx = 1, and the target platform gets AVX vec-
torized code if it supports it when avx = 1 and NEON vectorized code if it is one of the above
Cortex platforms and neon = 1.

For single precision, the options are

Matlab

Python

codeoptions.floattype = 'float';
codeoptions.neon = 1;

codeoptions.floattype = 'float'
codeoptions.neon = 1

For double precision, the options are

Matlab

Python

codeoptions.floattype = 'double';
codeoptions.neon = 2;

codeoptions.floattype = 'double'
codeoptions.neon = 2

In case one wants to disable NEON intrinsics in the generated target code, the default value
of the neon option is

Matlab

Python

codeoptions.neon = 0;

Chapter 17. Solver Options 425

FORCESPRO User Manual

codeoptions.neon = 0

If NEON vectorization is being used and there is a mismatch between float precision and the
value of the neon option, the solver is automatically generated with the following options:

Matlab

Python

codeoptions.floattype = 'double';
codeoptions.neon = 2;

codeoptions.floattype = 'double'
codeoptions.neon = 2

and a warning message is raised by the MATLAB client.

Note: From version 1.9.0, ARMv8-A NEON instructions are generated. Hence, target plat-
forms based on ARMv7 and previous versions are currently not supported.

17.2.20 Tips for solving QPs in single precision

Solving QPs in single precision can be rather challenging, i.e. non-converging solves are likely
to occur due to the lack of accuracy. In order to mitigate this undesirable behaviour, several
options can be tuned to make convergence more robust. They are shown and commented
in the code snippet below.

Matlab

Python

codeoptions.floattype = 'float';

codeoptions.regularize.epsilon = 1e-5; % Tolerance on pivot in factorization
codeoptions.regularize.delta = 5e-3; % On-the-fly regularization coefficient in␣
→˓factorization
codeoptions.regularize.epsilon2 = 1e-5; % Tolerance on pivot in factorization
codeoptions.regularize.delta2 = 5e-3; % On-the-fly regularization coefficient in␣
→˓factorization

codeoptions.accuracy.ineq = 1e-4; % infinity norm of residual for inequalities
codeoptions.accuracy.eq = 1e-4; % infinity norm of residual for equalities
codeoptions.accuracy.mu = 1e-6; % absolute duality gap
codeoptions.accuracy.rdgap = 1e-4; % relative duality gap := (pobj-dobj)/pobj

codeoptions.init = 1;

codeoptions.floattype = 'float'

codeoptions.regularize.epsilon = 1e-5 # Tolerance on pivot in factorization
codeoptions.regularize.delta = 5e-3 # On-the-fly regularization coefficient in␣
→˓factorization
codeoptions.regularize.epsilon2 = 1e-5 # Tolerance on pivot in factorization
codeoptions.regularize.delta2 = 5e-3 # On-the-fly regularization coefficient in␣
→˓factorization

(continues on next page)

426 Chapter 17. Solver Options

FORCESPRO User Manual

(continued from previous page)

codeoptions.accuracy.ineq = 1e-4 # infinity norm of residual for inequalities
codeoptions.accuracy.eq = 1e-4 # infinity norm of residual for equalities
codeoptions.accuracy.mu = 1e-6 # absolute duality gap
codeoptions.accuracy.rdgap = 1e-4 # relative duality gap := (pobj-dobj)/pobj

codeoptions.init = 1;

In general, the rationale behind this tuning is to make the tolerances looser and increase the
regularization in the linear algebra. Note that these tips are only applicable to QP solvers.
Solving NLPs in single precision is even more challenging and we currently do not offer a set
of options to robustify convergence on this type of problems.

17.2.21 MISRA 2012 compliance

If your license allows it, add the following field to generate C code that is compliant with the
MISRA 2012 rules:

Matlab

Python

codeoptions.misra2012_check = 1;

codeoptions.misra2012_check = 1

This option makes the generated solver code MISRA compliant. After compilation, the client
also downloads a folder whose name terminates with _misra2012_analysis. The folder con-
tains one summary of all MISRA violations for the solver source and header files. Note that the
option only produces MISRA compliant code when used with algorithms PDIP and PDIP_NLP.

17.2.22 Optimizing code size

The size of the solver libraries generated with code option PDIP_NLP can be reduced by means
of the option nlp.compact_code. By setting

Matlab

Python

codeoptions.nlp.compact_code = 1;

codeoptions.nlp.compact_code = 1

the user enables the FORCESPRO server to generate smaller code, which results in shorter
compilation time and slightly better solve time in some cases. This feature is especially effec-
tive on long horizon problems.

Note: The compact_code option is currently only supported when using the linear systems
solver codeoptions.nlp.linear_solver = 'normal_eqs' (which is the default choice).

The size of sparse linear algebra routines in the generated code can be reduced by changing
the option compactSparse from 0 to 1:

Matlab

Python

Chapter 17. Solver Options 427

FORCESPRO User Manual

codeoptions.compactSparse = 1;

codeoptions.compactSparse = 1

17.2.23 Optimizing Linear Algebra Operations

Some linear algebra routines in the generated code have available optimizations that can be
enabled by changing the options optimize_<optimization> from 0 to 1. These optimizations
change the code in order to make better use of some embedded architectures in which hard-
ware is more limited compared to host PC architectures. Therefore, these optimizations show
better results in embedded platforms such as ARM targets rather than during simulations on
host PCs. The available optimizations are:

• Cholesky Division: This option performs the divisions included in the Cholesky factor-
ization more efficiently to reduce its computation time.

• Registers: This option attempts to use the architecture’s registers in order to reduce
memory operations which can take significant time.

• Use Locals: These options (which are separated into simple/heavy/all in ascending com-
plexity) make better use of data locality in order to reduce memory jumps

• Operations Rearrange: This option rearranges operations in order to make more effi-
cient use of data and reduce memory jumps

• Loop Unrolling: This option unrolls some of the included loops in order to remove their
overhead.

• Enable Offset: This option allows the rest of the optimizations to take place in cases
where the matrix contains offsets.

Matlab

Python

codeoptions.optimize_choleskydivision = 1;
codeoptions.optimize_registers = 1;
codeoptions.optimize_uselocalsall = 1;
codeoptions.optimize_uselocalsheavy = 1; % overriden if uselocalsall is enabled
codeoptions.optimize_uselocalssimple = 1; % overriden if uselocalsheavy is enabled
codeoptions.optimize_operationsrearrange = 1;
codeoptions.optimize_loopunrolling = 1;
codeoptions.optimize_enableoffset = 1;

codeoptions.optimize_choleskydivision = 1
codeoptions.optimize_registers = 1
codeoptions.optimize_uselocalsall = 1
codeoptions.optimize_uselocalsheavy = 1 # overriden if uselocalsall is enabled
codeoptions.optimize_uselocalssimple = 1 # overriden if uselocalsheavy is enabled
codeoptions.optimize_operationsrearrange = 1
codeoptions.optimize_loopunrolling = 1
codeoptions.optimize_enableoffset = 1

17.2.24 Dump problem formulation and data

The MATLAB client of FORCESPRO provides a built-in tool to dump the problem formulation
to reproduce the exact same solver for future reference. This tool is explained in detail in
Section 20 and can be turned on by using the setting:

428 Chapter 17. Solver Options

FORCESPRO User Manual

codeoptions.dump_formulation = 1;

Furthermore, you can dump problem structs containing the runtime parameters from C as
described in Section 20. This tool is enabled for the host or/and the target platform by setting:

Matlab

Python

codeoptions.serializeCParamsHost = 1;
codeoptions.serializeCParamsTarget = 1;

codeoptions.serializeCParamsHost = 1
codeoptions.serializeCParamsTarget = 1

17.2.25 Identifying FORCESPRO solver

In order to be able to identity and distinguish the different FORCESPRO solvers, each solver
is assigned a unique GUID (32 hex characters) called Solver Id. The Solver Id is available for
all solvers in the header file as a C comment in the format:

/* Solver Id: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx */

This Solver Id is also available during runtime in the different FORCESPRO interfaces. It is
returned from the solver as an unsigned integer array of length 8 each element of which
represents 4 hex characters of the full GUID. These elements can be used to generate the
GUID as:

solver_id[0] /* hex: a1a2a3a4 */
solver_id[1] /* hex: b1b2b3b4 */
solver_id[2] /* hex: c1c2c3c4 */
solver_id[3] /* hex: d1d2d3d4 */
solver_id[4] /* hex: e1e2e3e4 */
solver_id[5] /* hex: g1g2g3g4 */
solver_id[6] /* hex: h1h2h3h4 */
solver_id[7] /* hex: i1i2i3i4 */

/* Solver Id: a1a2a3a4 b1b2b3b4 - c1c2c3c4 - d1d2d3d4 - e1e2e3e4 - g1g2g3g4 h1h2h3h4␣
→˓i1i2i3i4 */

The Solver Id is available during runtime through the info struct when using the following
interfaces: * C Interface * MATLAB MEX Interface * Python Interface * MPC Toolbox Plugin
MATLAB Interface (with the exception of the dense QPs)

The Solver Id is available during runtime as a Simulink Block output port when using the fol-
lowing interfaces: * Simulink Interface (when solver is generated with codeoptions.showinfo =
1) * MPC Toolbox Plugin Simulink Interface (the output port for the Solver Id can be enabled
via the Block Parameters of the MPC Toolbox Plugin FORCESPRO Simulink Block – with the
exception of the dense QPs)

17.3 High-level interface options

The FORCESPRO NLP solver of the high-level interface implements a nonlinear barrier
interior-point method. We will now discuss how to change several parameters in the solver.

Chapter 17. Solver Options 429

FORCESPRO User Manual

17.3.1 Integrators

When providing the continuous dynamics the user must select a particular integrator by set-
ting nlp.integrator.type as outlined in Table 17.9.

Table 17.9: Integrators options
nlp.integrator.type Type Order
'ForwardEuler' Explicit Euler Method 1
'ERK2' Explicit Runge-Kutta 2
'ERK3' Explicit Runge-Kutta 3
'ERK4' (default) Explicit Runge-Kutta 4
'BackwardEuler' Implicit Euler Method 1
'IRK2' Implicit Runge-Kutta 2
'IRK4' Implicit Runge-Kutta 4

The user must also provide the discretization interval (in seconds) and the number of inter-
mediate shooting nodes per interval. For instance:

Matlab

Python

codeoptions.nlp.integrator.type = 'ERK2';
codeoptions.nlp.integrator.Ts = 0.01;
codeoptions.nlp.integrator.nodes = 10;

codeoptions.nlp.integrator.type = 'ERK2'
codeoptions.nlp.integrator.Ts = 0.01
codeoptions.nlp.integrator.nodes = 10

Tip: Usually an explicit integrator such as RK4 should suffice for most applications. If you
have stiff systems, or suspect inaccurate integration to be the cause of convergence failure of
the NLP solver, consider using implicit integrators from the table above.

Note: Note that the implicit integrators BackwardEuler, IRK2 and IRK4 currently rely on the
CasADi AD tool and their legacy variant cannot be used in combination with CasADi MX ex-
pressions (see Automatic differentiation expression class).

Expert options for implicit integrators

The implicit integrators BackwardEuler, IRK2 and IRK4do not just evaluate the differential equa-
tion, but actually solve a nonlinear equation to obtain the state trajectory. This is done by
means of Newton iterations, with default values of 10 iterations for BackwardEuler and 5 itera-
tions for IRK2 and IRK4. These default values can be overwritten by using the following option:

Matlab

Python

codeoptions.nlp.integrator.newtonIter = 3;

codeoptions.nlp.integrator.newtonIter = 3

430 Chapter 17. Solver Options

FORCESPRO User Manual

In order to reduce computational effort, the Jacobian of the nonlinear equation is only com-
puted once by default. If your differential equations are highly nonlinear, it may be worth the
effort to recompute it at every Newton iteration. This is achieved by means of the following
option:

Matlab

Python

codeoptions.nlp.integrator.reuseNewtonJacobian = 0;

codeoptions.nlp.integrator.reuseNewtonJacobian = 0

Code-generated integrators

From FORCESPRO 4.1.0, integrators generated on the server are available when using ex-
plicit integrators ForwardEuler, RK2, RK3 and RK4, and the field continuous_dynamics is set
in the model structure. From FORCESPRO 4.4.0 the implicit integration scheme IRK2 was
added to the list of supported codegenerated integration schemes. These integrators result
in much smaller code size than previously. They also often result in faster run times on em-
bedded targets.

Two different methods are used to compute sensitivities associated to these integrators:

• chainrule, which is the default option, can also be triggered by setting

Matlab

Python

codeoptions.nlp.integrator.differentiation_method = 'chainrule';

codeoptions.nlp.integrator.differentiation_method = 'chainrule'

• vde, which can be triggered by settings the following option:

Matlab

Python

codeoptions.nlp.integrator.differentiation_method = 'vde';

codeoptions.nlp.integrator.differentiation_method = 'vde'

When using the vde option, the following options also need to be set

Matlab

Python

codeoptions.nlp.sensitivity.Ts = codeoptions.nlp.integrator.Ts;
codeoptions.nlp.sensitivity.nodes = codeoptions.nlp.integrator.nodes / 2;

% When using 'ERK2' or 'ERK4' for the sensitivity computation, the number of␣
→˓nodes for the sensitivity

% needs to be twice the number of nodes for the integrator
codeoptions.nlp.sensitivity.type = 'ERK4'; % Can also be 'ForwardEuler', 'RK2'␣
→˓depending on the application

Chapter 17. Solver Options 431

FORCESPRO User Manual

codeoptions.nlp.sensitivity.Ts = codeoptions.nlp.integrator.Ts
codeoptions.nlp.sensitivity.nodes = codeoptions.nlp.integrator.nodes / 2

When using 'ERK2' or 'ERK4' for the sensitivity computation, the number of␣
→˓nodes for the sensitivity

needs to be twice the number of nodes for the integrator
codeoptions.nlp.sensitivity.type = 'ERK4' # Can also be 'ForwardEuler', 'RK2'␣
→˓depending on the application

The vde option is likely to change the numerical behaviour of the solver but can help for re-
ducing the solve time in some cases, typically by having a looser integration on sensitivity.

Note: The vde option currently is still in an experimental state and we are working to fully
robustify it. You may give it a try, but be prepared for unexpected behaviour. Also, the RK3
integration method is currently not supported with the vde option.

Linear subsystem exploitation

Often nonlinear optimal control problems contain linear subsystems, meaning part of the
differential equation describing the dynamics of the system is linear while another part is non-
linear. By this we mean that the state 𝑥 of the system can be split into two parts 𝑥 = (𝑥1, 𝑥2)
such that the differential equation �̇� = 𝑐(𝑥, 𝑢) (𝑢 denoting the control input) governing the
dynamics of the system can be written as

�̇�1 = 𝐴1𝑥1 +𝐵1𝑢 (17.1)
�̇�2 = 𝑐2(𝑥1, 𝑥2, 𝑢). (17.2)

Here𝐴1 and𝐵1 denote constant matrices and 𝑐2 denotes a non-linear function. Since FORCE-
SPRO 4.4.0 it is possible to exploit such subsystems for performance by performing parts of
the numerical integration of the system offline. Currently this is supported only for the code-
generated ERK4 integration scheme (see Code-generated integrators). FORCESPRO can au-
tomatically detect a linear subsystem if it exists. One can activate the detection of linear sub-
systems by enabling the codeoptions.nlp.integrator.attempt_subsystem_exploitationoption
as follows:

Matlab

Python

codeoptions.nlp.integrator.attempt_subsystem_exploitation = 1;

codeoptions.nlp.integrator.attempt_subsystem_exploitation = 1

Optionally, in combination with setting this option, one can also specify the state indices of
the linear subsystem manually. These indices are specified as a numpy array of integers in
Python and a vector of indices in Matlab via the field model.linInIdx. For example, in a case
when 𝑥 ∈ R2, 𝑢 ∈ R and the right-hand-side 𝑐 of the ODE describing the dynamics of the
system is given by

𝑐(𝑥, 𝑢) =

⎛⎝ 𝑥2
𝑥1

cos(𝑥1) + sin(𝑥2) + 𝑥3 + 𝑢

⎞⎠ ,

one would have to specify

Matlab

Python

432 Chapter 17. Solver Options

FORCESPRO User Manual

model.linInIdx = [1, 2];

model.linInIdx = np.array([0, 1], dtype=np.int)

Note the 1-based indexing in Matlab and the 0-based indexing in Python. For further de-
tails on how to exploit linear subsystems using FORCESPRO, see Controlling a crane using a
FORCESPRO NLP solver.

Note: For large systems (more than about 16 states) there might be a considerable overhead
in determining the indices of the linear subsystem automatically. In case you encounter such
an overhead, you can avoid it by manually specifying model.linInIdx as shown above.

Moreover, note that linear subsystems currently cannot be exploited when using CasADi MX
expressions (see Automatic differentiation expression class).

17.3.2 Accuracy requirements

One can modify the termination criteria by altering the KKT tolerance with respect to sta-
tionarity, equality constraints, inequality constraints and complementarity conditions, respec-
tively, using the following fields:

Matlab

Python

% default tolerances
codeoptions.nlp.TolStat = 1e-5; % inf norm tol. on stationarity
codeoptions.nlp.TolEq = 1e-6; % tol. on equality constraints
codeoptions.nlp.TolIneq = 1e-6; % tol. on inequality constraints
codeoptions.nlp.TolComp = 1e-6; % tol. on complementarity

default tolerances
codeoptions.nlp.TolStat = 1e-5 # inf norm tol. on stationarity
codeoptions.nlp.TolEq = 1e-6 # tol. on equality constraints
codeoptions.nlp.TolIneq = 1e-6 # tol. on inequality constraints
codeoptions.nlp.TolComp = 1e-6 # tol. on complementarity

All tolerances are computed using the infinitiy norm ‖·‖∞.

17.3.3 Barrier strategy

The strategy for updating the barrier parameter is set using the field:

Matlab

Python

codeoptions.nlp.BarrStrat = 'loqo';

codeoptions.nlp.BarrStrat = 'loqo'

It can be set to 'loqo' (default) or to 'monotone'. The default settings often leads to faster
convergence, while 'monotone'may help convergence for difficult problems.

Chapter 17. Solver Options 433

FORCESPRO User Manual

17.3.4 Hessian approximation

The way the Hessian of the Lagrangian function is computed can be set using the field:

Matlab

Python

codeoptions.nlp.hessian_approximation = 'bfgs';

codeoptions.nlp.hessian_approximation = 'bfgs'

FORCESPRO currently supports BFGS updates ('bfgs') (default) and Gauss-Newton approx-
imation ('gauss-newton'). Exact Hessians will be supported in a future version. Read the sub-
sequent sections for the corresponding Hessian approximation method of your choice.

BFGS options

When the Hessian is approximated using BFGS updates, the initialization of the estimates
can play a critical role in the convergence of the method. The default value is the identity
matrix, but the user can modify it using e.g.:

Matlab

Python

codeoptions.nlp.bfgs_init = diag([0.1, 10, 4]);

codeoptions.nlp.bfgs_init = np.diag(np.array([0.1, 10, 4]))

Note that BFGS updates are carried out individually per stage in the FORCESPRO NLP solver,
so the size of this matrix is the size of the stage variable. Also note that this matrix must be
positive definite. When the cost function is positive definite, it often helps to initialize BFGS
with the Hessian of the cost function.

This matrix is also used to restart the BFGS estimates whenever the BFGS updates are skipped
several times in a row. The maximum number of updates skipped before the approximation
is re-initialized is set using:

Matlab

Python

codeoptions.nlp.max_update_skip = 2;

codeoptions.nlp.max_update_skip = 2

The default value for max_update_skip is 2.

In order to set the BFGS initialization through the bfgs_init codeoption one must first come
up with a guess for a good BFGS initialization. One way to do so is to first run the solver
without any user-defined BFGS initialization (i.e. not setting codeoptions.nlp.bfgs_init) and
using the BFGS matrix reached upon convergence as an inizialization. One can export the
BFGS matrix by setting

Matlab

Python

434 Chapter 17. Solver Options

FORCESPRO User Manual

% diagonal of BFGS
codeoptions.exportBFGS = 1;
% lower triangular of BFGS
codeoptions.exportBFGS = 2;

diagonal of BFGS
codeoptions.exportBFGS = 1
lower triangular of BFGS
codeoptions.exportBFGS = 2

Istead of specifying the BFGS initialization at codegen one can also specify it at run-time. In
order to do this one should set

Matlab

Python

codeoptions.nlp.parametricBFGSinit = 1;

codeoptions.nlp.parametricBFGSinit = 1

before generating the FORCESPRO solver. Having done this, the generated solver will expect
an input problem.BFGSinitLower<stage number> for every stage. This is a vector which specifies
the BFGS hessian initialization in LOWER TRIANGULAR ROW MAJOR format. Thus, in order
to specify e.g. the matrix ⎛⎝𝑎1 0 0

0 𝑎2 0
0 0 𝑎3

⎞⎠
for constants 𝑎1, 𝑎2, 𝑎3 > 0 as the BFGS inizialization at stage 6 out of 50 stages in total, one
would specify

Matlab

Python

problem.BFGSinitLower06 = [a_1, 0, a_2, 0, 0, a_3];

problem["BFGSinitLower06"] = np.array([a_1, 0, a_2, 0, 0, a_3])

Gauss-Newton options

For problems that have a least squares objective, i.e. the cost function can be expressed by a
vector-valued function 𝑟𝑘 : R𝑛 → R𝑚 which implicitly defines the objective function as:

𝑓𝑘(𝑧𝑘, 𝑝𝑘) =
1

2
‖𝑟𝑘(𝑧𝑘, 𝑝𝑘)‖22 ,

the Gauss-Newton approximation of the Hessian is given by:

∇2
𝑥𝑥𝐿𝑘 ≈ ∇𝑟𝑘(𝑧𝑘, 𝑝𝑘)∇𝑟𝑘(𝑧𝑘, 𝑝𝑘)⊤

and can lead to faster convergence and a more reliable method. When this option is selected,
the functions 𝑟𝑘 have to be provided by the user in the field LSobjective. For example if 𝑟(𝑧) =√

100𝑧21 +
√

6𝑧22 , i.e. 𝑓(𝑧) = 50𝑧21 +3𝑧22 , then the following code defines the least-squares objective
(note that 𝑟 is a vector-valued function):

Matlab

Python

Chapter 17. Solver Options 435

FORCESPRO User Manual

model.objective = @(z) 0.1* z(1)^2 + 0.01*z(2)^2;
model.LSobjective = @(z) [sqrt(0.2)*z(1); sqrt(0.02)*z(2)];

not yet implemented

Important: The field LSobjective will have precedence over objective, which need not be
defined in this case.

When providing your own function evaluations in C, you must populate the Hessian argu-
ment with a positive definite Hessian.

17.3.5 Line search settings

The line search first computes the maximum step that can be taken while maintaining the
iterates inside the feasible region (with respect to the inequality constraints). The maximum
distance is then scaled back using the following setting:

Matlab

Python

% default fraction-to-boundary scaling
codeoptions.nlp.ftbr_scaling = 0.9900;

default fraction-to-boundary scaling
codeoptions.nlp.ftbr_scaling = 0.9900;

17.3.6 Regularization

To avoid ill-conditioned saddle point systems, FORCESPRO employs two different types of
regularization, static and dynamic regularization.

Static regularization

Static regularization of the augmented Hessian by 𝛿𝑤𝐼 , and of the multipliers corresponding
to the equality constraints by −𝛿𝑐𝐼 helps avoid problems with rank deficiency. The constants
𝛿𝑤 and 𝛿𝑐 vary at each iteration according to the following heuristic rule:

𝛿𝑤 = 𝜂𝑤 min(𝜇, ‖𝑐(𝑥)‖))𝛽𝑤 · (𝑖+ 1)−𝛾𝑤 + 𝛿𝑤,min

𝛿𝑐 = 𝜂𝑐 min(𝜇, ‖𝑐(𝑥)‖))𝛽𝑐 · (𝑖+ 1)−𝛾𝑐 + 𝛿𝑐,min

where 𝜇 is the barrier parameter and 𝑖 is the number of iterations.

This rule has been chosen to accommodate two goals: First, make the regularization depen-
dent on the progress of the algorithm - the closer we are to the optimum, the smaller the
regularization should be in order not to affect the search directions generated close to the
solution, promoting superlinear convergence properties. Second, the amount of regulariza-
tion employed should decrease with the number of iterations to a certain minimum level, at
a certain sublinear rate, in order to prevent stalling due to too large regularization. FORCE-
SPRO NLP does not employ an inertia-correcting linear system solver, and so relies heavily on
the parameters of this regularization to be chosen carefully.

You can change these parameters by using the following settings:

436 Chapter 17. Solver Options

FORCESPRO User Manual

Matlab

Python

% default static regularization parameters
codeoptions.nlp.reg_eta_dw = 1e-4;
codeoptions.nlp.reg_beta_dw = 0.8;
codeoptions.nlp.reg_min_dw = 1e-9;
codeoptions.nlp.reg_gamma_dw = 1.0/3.0;

codeoptions.nlp.reg_eta_dc = 1e-4;
codeoptions.nlp.reg_beta_dc = 0.8;
codeoptions.nlp.reg_min_dc = 1e-9;
codeoptions.nlp.reg_gamma_dc = 1.0/3.0;

default static regularization parameters
codeoptions.nlp.reg_eta_dw = 1e-4
codeoptions.nlp.reg_beta_dw = 0.8
codeoptions.nlp.reg_min_dw = 1e-9
codeoptions.nlp.reg_gamma_dw = 1.0/3.0

codeoptions.nlp.reg_eta_dc = 1e-4
codeoptions.nlp.reg_beta_dc = 0.8
codeoptions.nlp.reg_min_dc = 1e-9
codeoptions.nlp.reg_gamma_dc = 1.0/3.0

Note that by choosing 𝛿𝑤 = 0 and 𝛿𝑐 = 0, you can turn off the progress and iteration dependent
regularization, and rely on a completely static regularization by 𝛿𝑤,min and 𝛿𝑐,min, respectively.

Dynamic regularization

Dynamic regularization regularizes the matrix on-the-fly to avoid instabilities due to numeri-
cal errors. During the factorization of the saddle point matrix, whenever it encounters a pivot
smaller than 𝜖, it is replaced by 𝛿. There are two parameter pairs: (𝜖, 𝛿) affects the augmented
Hessian and (𝜖2, 𝛿2) affects the search direction computation. You can set these parameters
by:

Matlab

Python

% default dynamic regularization parameters
codeoptions.regularize.epsilon = 1e-12; % (for Hessian approx.)
codeoptions.regularize.delta = 4e-6; % (for Hessian approx.)
codeoptions.regularize.epsilon2 = 1e-14; % (for Normal eqs.)
codeoptions.regularize.delta2 = 1e-14; % (for Normal eqs.)

default dynamic regularization parameters
codeoptions.regularize.epsilon = 1e-12 # (for Hessian approx.)
codeoptions.regularize.delta = 4e-6 # (for Hessian approx.)
codeoptions.regularize.epsilon2 = 1e-14 # (for Normal eqs.)
codeoptions.regularize.delta2 = 1e-14 # (for Normal eqs.)

17.3.7 Linear system solver

The interior-point method solves a linear system to find a search direction at every iteration.
FORCESPRO NLP offers the following four linear solvers:

Chapter 17. Solver Options 437

FORCESPRO User Manual

• 'normal_eqs' (default): Solving the KKT system in normal equations form.

• 'symm_indefinite': improved variant of 'symm_indefinite_legacy' introduced in FORCE-
SPRO version 5.0.0; roughly as efficient as normal_eqs but more robust.

• 'symm_indefinite_fast': Solving the KKT system in augmented / symmetric indefinite
form, using regularization and positive definite Cholesky factorizations only. This is often
the fastest solver but may be less numerical stable than symm_indefinite.

• 'symm_indefinite_legacy': Solving the KKT system in augmented / symmetric indefinite
form; may be removed in a future release

The linear system solver can be selected by setting the following field:

Matlab

Python

codeoptions.nlp.linear_solver = 'symm_indefinite';

codeoptions.nlp.linear_solver = 'symm_indefinite'

It is recommended to try different linear solvers as the robustness and speed of the solvers
are problem-dependent. The overall most robust method is symm_indefinite, which is also
very efficient. For certain problems normal_eqs and 'symm_indefinite_fast' may be slightly
faster than symm_indefinite but possibly also slightly less numerically stable.

Note: Independent of the linear system solver choice, the generated code is always library-
free and statically allocated, i.e. it can be embedded anywhere.

Note: From FORCESPRO version 5.0.0 onwards, the option symm_indefinite refers to an
improved version; use symm_indefinite_legacy to restore the previous default.

The 'normal_eqs' solver is the standard FORCESPRO linear system solver based on a full
reduction of the KKT system (the so-called normal equations form). It works well for stan-
dard problems, especially convex problems or nonlinear problems where the BFGS or Gauss-
Newton approximations of the Hessian are numerically sufficiently well conditioned.

The 'symm_indefinite' solver is numerically more robust than 'normal_eqs' and
symm_indefinite_fast and typically similarly efficient. It is an improved variant of the
'symm_indefinite_legacy'. Furthermore, it implements iterative refinement which further
improves numerical stability (see Iterative refinement).

The 'symm_indefinite_fast' solver is typically the fastest solver. Currently only used for
receding-horizon/MPC-like problems where dimensions of all stages are equal (except for
the first and last stage, those are handled separately).

The 'symm_indefinite_legacy' solver is the most robust one, but currently replaced by an at
least equally robust improved variant.

Iterative refinement

The linear solver 'symm_indefinite' supports iterative refinement to further improve numer-
ical stability. Iterative refinement is recommended for problems that don’t converge due to
numerical issues but can be safely disabled (default) for most problems. In order to enable
iterative refinement, set codeoptions.nlp.refinement_steps to the desired number of steps
> 0. Two types of iterative refinement are implemented which can be selected by setting
codeoptions.nlp.refinement_type as outlined in Table 17.10.

438 Chapter 17. Solver Options

FORCESPRO User Manual

Table 17.10: Options for setting iterative refinement type
nlp.refinement_type Description
0 Includes additional modification (default)
1 Strictly based on the original linear system

17.3.8 Automatic differentiation tool

If external functions and derivatives are not provided directly as C code by the user, FORCE-
SPRO makes use of an automatic differentiation (AD) tool to generate efficient C code for all
the functions (and their derivatives) inside the problem formulation. Currently, two different
AD tools (or four different AD tool versions) are supported that can be chosen by means of
the setting nlp.ad_tool as summarized in Table 17.11.

Table 17.11: Automatic differentiation tool options
nlp.ad_tool Tool URL
'casadi' CasADi (as in path or v3.5.5) CasADi
'casadi-2.4.2' CasADi v2.4.2 CasADi
'casadi-3.5.1' CasADi v3.5.1 CasADi
'casadi-3.5.5' CasADi v3.5.5 CasADi
'symbolic-math-tbx' MathWorks Symbolic Math Toolbox MathWorks

Note that MathWorks Symbolic Math Toolbox requires an additional license, which is why the
default option is set to

Matlab

Python

codeoptions.nlp.ad_tool = 'casadi';

codeoptions.nlp.ad_tool = 'casadi'

Also note that the use of implicit integrators BackwardEuler, IRK2 and IRK4 (see Section 17.3.1)
currently still rely on using the CasADi AD tool.

17.3.9 Automatic differentiation expression class

The AD tool CasADi supports two different types of symbolic expressions, called SX and MX.
While SX expressions tend to be leaner and offer best performance for mathematical “oper-
ations that are naturally written as a sequence of scalar operations” (see CasADi’s symbolic
framework)), MX expressions offer advantages for matrix operations.

FORCESPRO only supported SX expressions prior to version 6.1.0 and still uses them by de-
fault. However, starting with version 6.1.0, FORCESPRO offers to make use of MX expressions
by setting the following codeoption:

Matlab

Python

codeoptions.nlp.ad_expression_class = 'MX';

codeoptions.nlp.ad_expression_class = 'MX'

Chapter 17. Solver Options 439

https://web.casadi.org
https://web.casadi.org
https://web.casadi.org
https://web.casadi.org
https://www.mathworks.com/products/symbolic.html
https://web.casadi.org/docs/#document-symbolic
https://web.casadi.org/docs/#document-symbolic

FORCESPRO User Manual

All supported values of that codeoption nlp.ad_expression_class are summarized in Table
17.12. Note that this option is only supported when using CasADi as AD Tool and that MX
expressions are only supported for CasADi versions 3.5.1 and 3.5.5.

Table 17.12: Automatic differentiation expression classes
nlp.ad_expression_class Supported AD Tools
'SX' CasADi v2.4.2, v3.5.1, v3.5.5
'MX' CasADi v3.5.1, v3.5.5

Note: Use CasADi MX expressions with care. In particular, when switching your FORCESPRO
formulation between using SX and MX expressions, minor numerical differences may arise
that can lead to (usually minor) differences in number of iterations or optimal solutions.

Note: Use of CasADi MX expressions is currently not supported in combination with any
of the following FORCESPRO features: legacy and symbolic dump tool, implicit legacy inte-
grators, linear subsystem exploitation, MINLP formulations and inside the MathWorks MPC
Plugins.

17.3.10 Re-use of callback code

When defining your NLP problem formulation using an AD tool, you may specify objective
functions, dynamic equations and constraints separately on each stage. In order to reduce
the size of the generated callback code, FORCESPRO will perform a check whether all these
callbacks are identical on any two or more stages and if so, only generates the callback code
for those stages once. However, checking for exact identity can be tricky and may sometimes
lead to false results. By default, FORCESPRO performs a less strict check for identity result-
ing in less duplicated callback code. If you observe that two stages are wrongly identified as
identical, you can enable a more strict check by using the following codeoption:

Matlab

Python

codeoptions.nlp.strictCheckDistinctStages = 1;

not yet supported

Note that using this option may be overly conservative and lead to duplicated callback code
for different stages that are actually identical.

17.3.11 Safety checks

By default, the output of the function evaluations is checked for the presence of NaNs or INFs
in order to diagnose potential initialization problems. In order to speed up the solver one can
remove these checks by setting:

Matlab

Python

codeoptions.nlp.checkFunctions = 0;

440 Chapter 17. Solver Options

FORCESPRO User Manual

codeoptions.nlp.checkFunctions = 0

17.4 Convex branch-and-bound options

The settings of the FORCESPRO mixed-integer branch-and-bound convex solver are ac-
cessed through the codeoptions.mip struct. It is worthwhile to explore different values for
the settings in Table 17.13, as they might have a severe impact on the performance of the
branch-and-bound procedure.

Note: All the options described below are currently not available with the FORCESPRO non-
linear solver. For mixed-integer nonlinear programs and the available options, please have a
look at paragraph Mixed-integer nonlinear solver.

Table 17.13: Branch-and-bound options
Setting Values Default
mip.timeout Any value ≥ 0 31536000 (1 year)
mip.mipgap Any value ≥ 0 0
mip.branchon 'mostAmbiguous', 'leastAmbiguous' 'mostAmbiguous'
mip.stageinorder 0 (OFF), 1 (ON) 1 (ON)
mip.explore 'bestFirst', 'depthFirst' 'bestFirst'
mip.inttol Any value > 0 1E-5
mip.queuesize Any integer value ≥ 0 1000

A description of each setting is given below:

• mip.timeout: Timeout in seconds, after which the search is stopped and the best solution
found so far is returned.

• mip.mipgap: Relative sub-optimality after which the search shall be terminated. For ex-
ample, a value of 0.01 will search for a feasible solution that is at most 1%-suboptimal.
Set to zero if the optimal solution is required.

• mip.branchon: Determines which variable to branch on after having solved the relaxed
problem. Options are 'mostAmbiguous' (i.e. the variable closest to 0.5) or 'leastAmbiguous'
(i.e. the variable closest to 0 or 1).

• mip.stageinorder: Stage-in-order heuristic: For the branching, determines whether to fix
variables in order of the stage number, i.e. first all variables of stage 𝑖 will be fixed before
fixing any of the variables of stage 𝑖 + 1. This is often helpful in multistage problems,
where a timeout is expected to occur, and where it is important to fix the early stages
first (for example MPC problems). Options are 0 for OFF and 1 for ON.

• mip.explore: Determines the exploration strategy when selecting pending nodes. Op-
tions are 'bestFirst', which chooses the node with the lowest lower bound from all
pending nodes, or 'depthFirst', which prioritizes nodes with the most number of fixed
binaries first to quickly reach a node.

• mip.inttol: Integer tolerance for identifying binary solutions of relaxed problems. A so-
lution of a relaxed problem with variable values that are below inttol away from binary
will be declared to be binary.

• mip.queuesize: Maximum number of pending nodes that the branch and bound solver
can store. If that number is exceeded during the search, the solver quits with an exitflag
value of -2 and returns the best solution found so far.

Chapter 17. Solver Options 441

FORCESPRO User Manual

17.5 Solve methods

As a default optimization method the primal-dual interior-point method is used. Several
other methods are available. To change the solve method set the solvemethod field as out-
lined in Table 17.14.

Table 17.14: Solve methods
solvemethod Method Description
'PDIP_NLP' Nonlinear Primal-Dual Interior-Point method The Nonlinear Primal-

Dual Interior-Point
method is the most sta-
ble and robust method
for most nonlinear prob-
lems.

'SQP_NLP' Sequential Quadratic Programming method The Sequential Quadratic
Programming method
may be more efficient
on mildly nonlinear
problems.

'PDIP' Primal-Dual Interior-Point method The Primal-Dual Interior-
Point method is the
most stable and robust
method for most convex
problems.

'ADMM' Alternating Direction Methods of Multipliers For some problems,
ADMM may be faster.
The method variant and
several algorithm param-
eters can be tuned in
order to improve perfor-
mance.

'DFG' Dual Fast Gradient method For some problems
with simple constraints,
our implementation
of the dual fast gradi-
ent method can be the
fastest option. No param-
eters need to be tuned in
this method.

'FG' Fast Gradient method For problems with no
equality constraints (only
one stage) and simple
constraints, the primal
fast gradient method
can give medium accu-
racy solutions extremely
quickly. The method has
several tuning parame-
ters that can significantly
affect the performance.

17.5.1 Primal-Dual Interior-Point Method

The Primal-Dual Interior-Point method is the default optimization method for either nonlin-
ear/nonconvex or convex problems. It is a stable and robust method for most of the problems.

442 Chapter 17. Solver Options

FORCESPRO User Manual

Solver Initialization

The performance of the solver can be influenced by the way the variables are initialized. The
default method (cold start) should work in most cases extremely reliably, so there should
be no need in general to try other methods, unless you are experiencing problems with the
default initialization scheme. To change the method of initialization in FORCESPRO set the
field init to one of the values in Table 17.15.

Table 17.15: PDIP solver initialization
init Method Initialization method
0 (default) Cold start Set all primal variables to 0, and all dual variables to the

square root of the initial complementarity gap 𝜇0 : 𝑧𝑖 =
0, 𝑠𝑖 =

√
𝜇0, 𝜆𝑖 =

√
𝜇0. The default value is 𝜇0 = 106.

1 Centered start Set all primal variables to zero, the slacks to the RHS of
the corresponding inequality, and the Lagrange multi-
pliers associated with the inequalities such that the pair-
wise product between slacks and multipliers is equal to
the parameter 𝜇0 : 𝑧𝑖 = 0, 𝑠𝑖 = 𝑏ineq and 𝑠𝑖𝜆𝑖 = 𝜇0.

2 Primal warm start Set all primal variables as provided by the user. Calcu-
late the residuals and set the slacks to the residuals if
they are sufficiently positive (larger than 10−4), or to one
otherwise. Compute the associated Lagrange multipli-
ers such that 𝑠𝑖𝜆𝑖 = 𝜇0.

Initial Complementary Slackness

The default value for 𝜇0 is 106. To use a different value, use:

Matlab

Python

codeoptions.mu0 = 10;

codeoptions.mu0 = 10;

Accuracy Requirements

The accuracy for which FORCESPRO returns the OPTIMAL flag can be set as follows:

Matlab

Python

codeoptions.accuracy.ineq = 1e-6; % infinity norm of residual for inequalities
codeoptions.accuracy.eq = 1e-6; % infinity norm of residual for equalities
codeoptions.accuracy.mu = 1e-6; % absolute duality gap
codeoptions.accuracy.rdgap = 1e-4; % relative duality gap := (pobj-dobj)/pobj

codeoptions.accuracy.ineq = 1e-6 # infinity norm of residual for inequalities
codeoptions.accuracy.eq = 1e-6 # infinity norm of residual for equalities
codeoptions.accuracy.mu = 1e-6 # absolute duality gap
codeoptions.accuracy.rdgap = 1e-4 # relative duality gap := (pobj-dobj)/pobj

Chapter 17. Solver Options 443

FORCESPRO User Manual

Line Search Settings

If FORCESPRO experiences convergence difficulties, you can try selecting different line search
parameters. The first two parameters of codeoptions.linesearch, factor_aff and factor_cc are
the backtracking factors for the line search (if the current step length is infeasible, then it is
reduced by multiplication with these factors) for the affine and combined search direction,
respectively.

Matlab

Python

codeoptions.linesearch.factor_aff = 0.9;
codeoptions.linesearch.factor_cc = 0.95;

codeoptions.linesearch.factor_aff = 0.9
codeoptions.linesearch.factor_cc = 0.95

The remaining two parameters of the field linesearch determine the minimum (minstep) and
maximum step size (maxstep). Choosing minstep too high will cause the generated solver to
quit with an exitcode saying that the line search has failed, i.e. no progress could be made
along the computed search direction. Choosing maxstep too close to 1 is likely to cause nu-
merical issues, but choosing it too conservatively (too low) is likely to increase the number of
iterations needed to solve a problem.

Matlab

Python

codeoptions.linesearch.minstep = 1e-8;
codeoptions.linesearch.maxstep = 0.995;

codeoptions.linesearch.minstep = 1e-8
codeoptions.linesearch.maxstep = 0.995

Regularization

During factorization of supposedly positive definite matrices, FORCESPRO applies a regular-
ization to the 𝑖-th pivot element if it is smaller than 𝜖. In this case, it is set to 𝛿, which is the
lower bound on the pivot element that FORCESPRO allows to occur.

Matlab

Python

codeoptions.regularize.epsilon = 1e-13; % if pivot element < epsilon ...
codeoptions.regularize.delta = 1e-8; % then set it to delta

codeoptions.regularize.epsilon = 1e-13 # if pivot element < epsilon ...
codeoptions.regularize.delta = 1e-8 # then set it to delta

17.5.2 Alternating Directions Method of Multipliers

FORCESPRO implements several optimization methods based on the ADMM framework. Dif-
ferent variants can handle different types of constraints and FORCESPRO will automatically
choose an ADMM variant that can handle the constraints in a given problem. To manually
choose a specific method in FORCESPRO, use the ADMMvariant field of codeoptions:

444 Chapter 17. Solver Options

FORCESPRO User Manual

Matlab

Python

codeoptions.ADMMvariant = 1; % can be 1 or 2

codeoptions.ADMMvariant = 1 # can be 1 or 2

where variant 1 is as follows:

minimize
1

2
𝑦⊤𝐻𝑦 + 𝑓⊤𝑦

subject to 𝐷𝑦 = 𝑐

𝑧 ≤ 𝑧 ≤ 𝑧

𝑦 = 𝑧

and variant 2 is as follows:

minimize
1

2
𝑦⊤𝐻𝑦 + 𝑓⊤𝑦

subject to 𝐷𝑦 = 𝑐

𝐴𝑦 = 𝑧

𝑧 ≤ 𝑏

Accuracy requirements

The accuracy for which FORCESPRO returns the OPTIMAL flag can be set as follows:

Matlab

Python

codeoptions.accuracy.consensus = 1e-3; % infinity norm of the consensus equality
codeoptions.accuracy.dres = 1e-3; % infinity norm of the dual residual

codeoptions.accuracy.consensus = 1e-3 # infinity norm of the consensus equality
codeoptions.accuracy.dres = 1e-3 # infinity norm of the dual residual

Note that, in contrast to primal-dual interior-point methods, the required number of ADMM
iterations varies very significantly depending on the requested accuracy. ADMM typically re-
quires few iterations to compute medium accuracy solutions, but many more iterations to
achive the same accuracy as interior-point methods. For feedback applications, medium ac-
curacy solutions are typically sufficient. Also note that the ADMM accuracy requirements have
to be changed depending on the problem scaling.

Method parameters

ADMM uses a regularization parameter 𝜌, which also acts as the step size in the gradient step.
The convergence speed of ADMM is highly variable in the parameter 𝜌. Its value should satisfy
𝜌 > 0. This parameter can be tuned using the following command:

Matlab

Python

codeoptions.ADMMrho = 1;

Chapter 17. Solver Options 445

FORCESPRO User Manual

codeoptions.ADMMrho = 1

In some cases it may be possible to let FORCESPRO choose the value 𝜌 automatically. To
enable this feature set:

Matlab

Python

codeoptions.ADMMautorho = 1;

codeoptions.ADMMautorho = 1

Please note that this does not guarantee that the choice of 𝜌 will be optimal.

ADMM can also include an ‘over-relaxation’ step that can improve the convergence speed.
This step is typically useful for problems where ADMM exhibits very slow convergence and
can be tuned using the parameter 𝛼. Its value should satisfy 1 ≤ 𝛼 ≤ 2. This step using the
following command:

Matlab

Python

codeoptions.ADMMalpha = 1;

codeoptions.ADMMalpha = 1

Precomputations

For problems with time-invariant data, FORCESPRO can compute full matrix inverses at code
generation time and then implement matrix solves online by dense matrix-vector multipli-
cation. In some cases, especially when the prediction horizon is long, it may be better to
factorize the matrix and implement matrix solves using forward and backward solves with
the pre-computed factors. To manually switch on this option, use the ADMMfactorize field of
codeoptions.

When the data is time-varying, or when the prediction horizon is larger than 15 steps, FORCE-
SPRO automatically switches to a factorization-based method.

Matlab

Python

codeoptions.ADMMfactorize = 0;

codeoptions.ADMMfactorize = 0

17.5.3 Dual Fast Gradient Method

For some problems with simple constraints, our implementation of the dual fast gradient
method can be the fastest option. No parameters need to be tuned in this method.

446 Chapter 17. Solver Options

FORCESPRO User Manual

17.5.4 Primal Fast Gradient Method

For problems with no equality constraints (only one stage) and simple constraints, the primal
fast gradient method can give medium accuracy solutions extremely quickly. The method
has several tuning parameters that can significantly affect the performance.

Accuracy requirements

The accuracy for which FORCESPRO returns the OPTIMAL flag can be set as follows:

Matlab

Python

codeoptions.accuracy.gmap = 1e-5; % infinity norm of the gradient map

codeoptions.accuracy.gmap = 1e-5 # infinity norm of the gradient map

The gradient map is related to the difference with respect to the optimal objective value. Just
like with other first-order methods, the required number of FG iterations varies very signif-
icantly depending on the requested accuracy. Medium accuracy solutions can typically be
computed very quickly, but many iterations are needed to achieve the same accuracy as with
interior-point methods.

Method parameters

The user has to determine the step size in the fast gradient method. The convergence speed
of FG is highly variable in this parameter, which should typically be set to be one over the
maximum eigenvalue of the quadratic cost function. This parameter can be tuned using the
following command:

Matlab

Python

codeoptions.FGstep = 1/1000;

codeoptions.FGstep = 1/1000

In some cases it may be possible to let FORCESPRO choose the step size automatically. To
enable this feature set:

Matlab

Python

codeoptions.FGautostep = 1;

codeoptions.FGautostep = 1

Warm starting

The performance of the fast gradient method can be greatly influenced by the way the vari-
ables are initialized. Unlike with interior-point methods, fast gradient methods can be very
efficiently warm started with a good guess for the optimal solution. To enable this feature set:

Matlab

Chapter 17. Solver Options 447

FORCESPRO User Manual

Python

codeoptions.warmstart = 1;

codeoptions.warmstart = 1

When the user turns warm start on, a new parameter z_init_0 is automatically added. The
user should set it to be a good guess for the solution, which is typically available when solving
a sequence of problems.

448 Chapter 17. Solver Options

FORCESPRO User Manual

Chapter 18

Exitflags

• Exitflags and quality of the result

• Mixed integer Nonlinear Programming exitflags

The FORCESPRO solver can identify issues that occur during its execution (whether they are
of technical or of numerical nature) and notify the user of these issues. The solver is reporting
these issues in the form of exit status codes called exitflags. Usages of the exitflags:

• The user can identify and fix configuration errors and mistakes with calling the solver.

• Certain exitflags can provide hints about issues to the problem formulation. By consult-
ing the returned exitflags the user can perform improvements to the problem formula-
tion which can lead to a more robust problem formulation.

• The user can identify issues occuring during execution on the fly. This can be used to
prepare a strategy with exitfag-based decisions in order to achieve a more robust exe-
cution (handling both normal scenarios and edge cases).

18.1 Exitflags and quality of the result

The FORCESPRO solver returns 3 output elements in order to report the status and result of
the execution:

• output: contains the solution to the problem given to the solver to be solved

• exitflag: contains the exitflag status code returned by the solver

• info: contains further information about the execution and solution of the problem

The standard format of an execution of the FORCESPRO solver is shown below:

Matlab

Python

[output, exitflag, info] = FORCESNLPsolver(problem);

output, exitflag, info = solver.solve(problem)

The possible exitflags are documented in Table 18.1. The exitflag should always be checked
before continuing with program execution to avoid using spurious solutions later in the code.
Check whether the solver has exited without an error before using the solution. For example,
we suggest to use an assert statement:

449

FORCESPRO User Manual

Matlab

Python

assert(exitflag == 1, 'Some issue with FORCESPRO solver');

assert exitflag == 1, "Some issue with FORCESPRO solver"

450 Chapter 18. Exitflags

FORCESPRO User Manual

Table 18.1: Exitflag values
Exitflag Description
1 Locally optimal solution found (i.e. the point satisfies the KKT optimality

conditions to the requested accuracy).
2 (for binary branch-and-bound) A feasible point has been identified for

which the objective value is no more than codeoptions.mip.mipgap*100
per cent worse than the global optimum.
(for all other solvers) Specified timeout set for the solver execution has
been reached. Best non-optimal point found during execution will be
returned. You can examine the value of optimality conditions returned
inside the info struct by FORCESPRO to decide whether the point re-
turned is acceptable.

3 Solver execution has been terminated as the termination parameter
has been set by the user. Best non-optimal point found during execu-
tion will be returned. You can examine the value of optimality condi-
tions returned inside the info struct by FORCESPRO to decide whether
the point returned is acceptable.

11 This exitflag is not returned for a solver call. It is returned when calling
the external callbacks of the solver (see Calling the nonlinear functions
from Matlab or Python). This exitflag indicates that the execution of
the integrator in the external callbacks was successful.

12 This exitflag is not returned for a solver call. It is returned when call-
ing the external callbacks of the solver (see Calling the nonlinear func-
tions from Matlab or Python). This exitflag indicates that the number of
steps set by the user for the integrator exceeded the maximum num-
ber of steps allowed.

0 (for binary branch-and-bound) maximum computation time of
codeoptions.mip.timeout reached. The returned solution is the best
one found so far.
(for all other solvers) Maximum number of iterations reached. You can
examine the value of optimality conditions returned inside the info
struct by FORCESPRO to decide whether the point returned is accept-
able.

-1 (only binary branch-and-bound) Infeasible problem (issues solving the
root relaxation to desired accuracy).

-2 (only binary branch-and-bound) Out of memory – cannot fit branch
and bound nodes into pre-allocated memory.

-3 Deprecated.
-4 Wrong number of inequalities input to solver.
-5 Error occured during matrix factorization.
-6 NaN or INF occurred during functions evaluations in external callbacks

or due to an internal error of the nonlinear solver.
-7 The solver could not proceed. Most likely cause is that the problem is in-

feasible.Try formulating a problem with slack variables (soft constraints)
to avoid this error. For low-level formulations, see also Debugging a for-
mulation.

-8 The internal QP solver could not proceed. This exitflag can only occur
when using the Sequential quadratic programming algorithm. The
most likely cause is that an infeasible QP or a numerical unstable QP
was encountered. Try increasing the Hessian regularization parameter
reg_hessian (see SQP specific codeoptions).

-9 The internal QP solver could not proceed. This exitflag can only occur
when using the Sequential quadratic programming algorithm. The
most likely cause is that an infeasible QP or a numerical unstable QP
was encountered. Try increasing the hessian regularization parame-
ter reg_hessian if this exitflag is encountered (see SQP specific codeop-
tions).

-10 NaN or INF occurred during evaluation of functions and derivatives or
due to an internal error of the convex solver. The problem might be
infeasible. If this occurs at iteration zero, try changing the initial point.
For example, for a cost function 1/

√
𝑥 with an initialization 𝑥0 = 0, this

error would occur. For low-level formulations, see also Debugging a
formulation.

-11 Invalid values in problem parameters.
-12 Specified timeout set for the solver was too small to find any point (op-

timal or non-optimal).
-13 An error occured in the solver while performing a linesearch.
-98 Thread failure. This can only happen if the solver is executing in parallel

and an error occured while managing the threads for parallel execu-
tion.

-99 Lock mechanism failure. This can only happen if the solver is executing
in parallel and the lock mechanism used to ensure data consistency
returned an error.

-100 License error. This typically happens if you are trying to execute code
that has been generated with a Simulation license of FORCESPRO on
another machine. Regenerate the solver using your machine. Addi-
tionally, this may occur in a HW machine that has not been properly
enabled yet for a FORCESPRO solver execution. For more information
see Licensing.

-101 Invalid memory error. The FORCESPRO solver uses memory provided
by the user. This mechanism is usually opaque in the various avail-
able interfaces and is mainly operated by the user when using the C
or C++ interface of FORCESPRO. This error indicates that the memory
provided was invalid. For more information see C interface: memory
allocations.

-102 Invalid number of threads specified. The solver can be configured dur-
ing code generation to support up to a maximum number of threads
for efficiency and data consistency reasons. This error indicates that the
number of the thread specified by the user during runtime exceeds the
maximum number of threads allowed. For more information see Mul-
ticore parallelization.

-200 Invalid return value (<= -100) of external functions occured (only if
codeoptions.callback_check_status = 1).

-201, ..., -299 a negative return value ret from external function evaluation occured
(only if codeoptions.callback_check_status = 1). Exitflag is calculated
as ret - 200.

Chapter 18. Exitflags 451

FORCESPRO User Manual

Note: Certain exitflags might not apply for all solve methods that can be selected for FORCE-
SPRO. The available exitflags for a solver can also be found in the generated solver files, in the
header file (under the include folder) as well as in the help section of the solver for the available
interfaces (e.g. MATLAB, Simulink or Python).

18.2 Mixed integer Nonlinear Programming exitflags

The FORCESPRO MINLP solver returns a different set of status code exitflags which are avail-
able in the info output element of the FORCESPRO solver. The available exitflags for the
MINLP solver can found below in Table 18.2.:

Table 18.2: MINLP exitflag values
Exitflag Description
0 Local optimum found. Final tolerance on integrality gap satisfied.
1 Integer feasible solution found.
2 No integer feasible found.
3 Relaxation solve failed at root node.
4 Unexpected error occured.
5 Search failed to converge.

452 Chapter 18. Exitflags

FORCESPRO User Manual

Chapter 19

Modelling Utilities

• Interpolations 1D (e.g. splines)

– Polynomial Parameterization

– Automatic Fit from Data

– Application Example

• Interpolations 2D (B-splines)

– B-Spline Representation

– Parametric B-Spline Representation

– Fitting B-Spline on Gridded Data

– Fitting B-Spline on Arbitrary Data

– Application Example

• Smooth Approximations

– Smooth Minimum

– Smooth Maximum

Like any derivative-based optimization solver, FORCESPRO works best if all functions defin-
ing the optimization problem are sufficiently smooth (i.e. at least continuously differentiable
once). Both the Matlab and the Python client of FORCESPRO come along with a couple of
utility functions to assist the user with setting up such smooth problem formulations. This
chapter provides details on those utility functions for modelling.

19.1 Interpolations 1D (e.g. splines)

If a given function is based on measurement data (or any other set of discrete data points),
one can interpolate between those data points to yield a continuous function. FORCESPRO
can either create such a function directly from the data points or allows you to provide a
polynomial parameterization that can be used inside your symbolic problem formulation.

19.1.1 Polynomial Parameterization

A polynomial parameterization can be obtained by providing a vector containing M+1 break
points (defining M interpolaton intervals or pieces) as well as an array defining M sets of N+1poly-

453

FORCESPRO User Manual

nomial coefficients, each set defining a local polynomial of order N for each of those pieces.

Calling the line

Matlab

Python

f = ForcesInterpolation(breaks, coefs);

f = forcespro.modelling.Interpolation(breaks, coefs)

will yield a symbolic representation of a polynomial in standard form

𝑓(𝑥) =

𝑁∑︁
𝑗=0

𝑐𝑖𝑗𝑥
𝑗 ∀ 𝑏𝑖−1 ≤ 𝑥 ≤ 𝑏𝑖 ∀ 𝑖 ∈ {1, . . . ,𝑀} ,

where b denotes the break points breaks and c denotes the coefficients coefs. f(x) can be a
scalar or a K-dimensional function, i.e. coefs may be given for a multi-valued interpolation. For
more details on how to pass those input parameters, we refer to the respective help function
as the format differs slightly between the Matlab and the Python client to follow domain-
specific conventions.

In case your coefficients are defined relative to beginning of each piece, you can call

Matlab

Python

f = ForcesInterpolation(breaks, coefs, 'pp');

f = forcespro.modelling.Interpolation(breaks, coefs, 'pp')

to yield a symbolic representation of a polynomial in “piecewise polynomial” form

𝑓(𝑥) =

𝑁∑︁
𝑗=0

𝑐𝑖𝑗(𝑥− 𝑏𝑖)
𝑗 ∀ 𝑏𝑖−1 ≤ 𝑥 ≤ 𝑏𝑖 ∀ 𝑖 ∈ {1, . . . ,𝑀} .

Note: In addition to providing fixed numerical values for break points and coefficients, you
may also pass symbolic quantities for some or all of those! This will allow you to change the
parameterization of your interpolation on the fly, e.g. by means of real-time parameters that
are passed to the FORCESPRO solver.

The symbolic interpolation f can now be used inside your problem formulation by evaluating
it, either at a fixed value or at any symbolic quantity, e.g.

Matlab

Python

% assuming a state vector x and a control input u
y = f(x(1)) + u(1);

% assuming a state vector x and a control input u
y = f(x[0]) + u[0]

Important: Symbolic interpolations are currently only supported when using CasADi as AD
tool.

454 Chapter 19. Modelling Utilities

FORCESPRO User Manual

19.1.2 Automatic Fit from Data

In case you do not want to specify break points and coefficients yourself, you can fit data
points directly by calling:

Matlab

Python

f = ForcesInterpolationFit(X, Y, method);

f = forcespro.modelling.InterpolationFit(X, Y, kind)

Here, X and Y are vectors (say, of dimension L) of data points to yield an interpolation that
satisfies

𝑓(𝑋𝑖) = 𝑌𝑖 ∀ 𝑖 ∈ {1, . . . , 𝐿} .

The third argument method/kind specifies the method to be used to obtain that fit using built-
in functionality of either Matlab (see Table Table 19.1) or Python (see Table Table 19.2).

The symbolic interpolation f can be used the same way as described in section Section 19.1.1.

Table 19.1: Interpolation Method for Matlab (see Matlab’s
interp1 for more details)

method Description
'linear' Piecewise linear
'nearest' Piecewise constant, value from nearest data point
'next' Piecewise constant, value from next data point
'previous' Piecewise constant, value from previous data point
'spline' (default) Piecewise cubic spline
'pchip' Shape-preserving piecewise cubic spline

Table 19.2: Interpolation Method for Python (see SciPy’s
interpolation class for more details)
kind Description
'cubic' (default) Piecewise cubic spline
'pchip' Shape-preserving piecewise cubic spline

19.1.3 Application Example

A full example on how to use interpolations inside your problem formulation can be
found in the examples folder that comes with your client. See the files ObstacleAvoidance/
ObstacleAvoidance_splines.m (MATLAB) and ObstacleAvoidance/obstacle_avoidance_splines.
py (Python), respectively. Therein, both road limits are defined as splines and are enforced as
inequality constraints.

19.2 Interpolations 2D (B-splines)

In many industrial applications, 2D lookup tables/maps are commonly used. These have to be
approximated by continuous function representations in order to use gradient-based solvers.
Such lookup tables can be approximated using two-dimensional B-spline representations. A
B-spline is a piecewise polynomial function.

Chapter 19. Modelling Utilities 455

FORCESPRO User Manual

In the following we provide several functionalities for fitting B-splines as well as capabilities
for supplying coefficients of already existing B-splines directly. Importantly, all methods re-
quire the use of CasADi as the automatic differentiation tool. Furthermore, the symbolic vari-
ables have to be set to be CasADi MX expressions, which can be done by codeoptions.nlp.
ad_expression_class = 'MX'.

19.2.1 B-Spline Representation

If you have already generated your own 2D spline, which can be represented as a general B-
spline, you can directly provide the coefficients, knots and degrees. The coefficient matrix is
matrix-indexed, meaning the x-inputs correspond to the rows and the y-inputs correspond
to the columns. The knots positions knots_x and knots_y entail the internal knots as well as
the additional ones on the boundaries/endpoints.

Matlab

Python

f = ForcesInterpolation2D(knots_x, knots_y, coefs, degree_x, degree_y, m=1,␣
→˓casadiOptions=struct());

f = forcespro.modelling.Interpolation2D(knots_x, knots_y, coefs, degree_x, degree_y,␣
→˓m=1, casadiOptions={})

This function is a wrapper for casadi.Function.bspline, where m and casadiOptions are op-
tional CasADi-function specific options. The returned f is a function handle taking as input
the two inputs to the lookup table and returning the lookup table value: z=f(x, y).

19.2.2 Parametric B-Spline Representation

It is also possible to supply the coefficients online as runtime parameters. However, the knots
and degrees still need to remain fixed, i.e. only the coefficient matrix can be changed online.
The numel_coefs is the number of elements of the matrix-indexed coefficients matrix. The
knots entail the internal as well as the additional ones on the boundaries/endpoints.

Matlab

Python

f = ForcesInterpolation2DParametric(numel_coefs, knots_x, knots_y, degree_x, degree_y,
→˓ m=1, casadiOptions=struct());

f = forcespro.modelling.Interpolation2DParametric(numel_coefs, knots_x, knots_y,␣
→˓degree_x, degree_y, m=1, casadiOptions={})

This function is a wrapper for casadi.bspline, where m and casadiOptions are optional CasADi-
function specific options. The returned f is a function handle taking as inputs the two inputs
to the lookup table as well as the coefficient matrix flattened in column-major order and
returning the lookup table value: z=f(x, y, coefs).

19.2.3 Fitting B-Spline on Gridded Data

For fitting on grid data (i.e. rectangular mesh), we can directly use CasADi’s spline interpola-
tion functionality.

Matlab

Python

456 Chapter 19. Modelling Utilities

FORCESPRO User Manual

f = ForcesInterpolation2DGridded(xgrid, ygrid, Z, scaling=[1, 1, 1],␣
→˓casadiOptions=struct());

f = forcespro.modelling.Interpolation2DGridded(xgrid, ygrid, Z, scaling=[1, 1, 1],␣
→˓casadiOptions={})

The xgrid and ygrid are the one-dimensional grid points in strictly ascending order and the Z
is a two-dimensional matrix-indexed meshgrid of z values corresponding to xgrid and ygrid
data sequences. Hence, Z has the size [length_x_grid, length_y_grid].

It additionally supports scaling of the spline inputs/outputs, which affects the numerical sta-
bility of the spline fitting routine. The scaling is automatically taken care of, so that the in-
puts/outputs to the resulting spline are still the physical quantities.

This function is a wrapper for casadi.interpolant, where casadiOptions are optional CasADi-
function specific options. The returned f is a function handle taking as input the two inputs
to the lookup table and returning the lookup table value: z=f(x, y).

The documentation for CasADi lookup tables can be found here: here (CasADi).

19.2.4 Fitting B-Spline on Arbitrary Data

For fitting on arbitrarily aligned data, we provide functionality which makes use of SciPy’s B-
spline fitting routines: SmoothBivariateSpline and LSQBivariateSpline respectively. Hence, if
utilizing these functions in Matlab, a valid Python3 installation compatible with our Matlab
version needs to be present in our system. For a compatibility list of Python3 with different
Matlab versions, see here (Compatibility).

Note: Additionally, the Python3 package SciPy needs to be present in our system as well as
the FORCESPRO client must be in our system’s Python path. For installing SciPy, follow the
instructions in here (SciPy) and for instructions on how to add the FORCESPRO client to the
Python path see here (Python Path).

The first method is the SmoothBivariateSpline of SciPy:

Matlab

Python

f = ForcesInterpolationFit_SmoothBivariateSpline(x, y, z, w=ones(1, length(x)),␣
→˓bbox=[min(x), max(x), min(y), max(y)], kx=3, ky=3, s=length(w), rankTol=1e-16,␣
→˓scaling=[1, 1, 1], casadiOptions=struct());

f = forcespro.modelling.InterpolationFit_SmoothBivariateSpline(x, y, z, w=np.ones((1,␣
→˓len(x))), bbox=[min(x), max(x), min(y), max(y)], kx=3, ky=3, s=len(w), eps=1e-16,␣
→˓scaling=[1, 1, 1], casadiOptions={})

All the arguments up to scaling are SciPy specific arguments, which can be found here: here
(SmoothBivariateSpline).

It additionally supports scaling of the spline inputs/outputs, which affects the numerical sta-
bility of the spline fitting routine. The scaling is automatically taken care of, so that the in-
puts/outputs to the resulting spline are still the physical quantities.

The fitted coefficients of SciPy are provided to a wrapper for casadi.Function.bspline, where
casadiOptions are optional CasADi-function specific options. The returned f is a function han-
dle taking as input the two inputs to the lookup table and returning the lookup table value:
z=f(x, y).

Chapter 19. Modelling Utilities 457

https://web.casadi.org/docs/#using-lookup-tables
https://ch.mathworks.com/support/requirements/python-compatibility.html
https://scipy.org/install/
https://forces.embotech.com/Documentation/installation/python.html#adding-the-forcespro-python-client-to-your-python-path
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothBivariateSpline.html#scipy.interpolate.SmoothBivariateSpline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothBivariateSpline.html#scipy.interpolate.SmoothBivariateSpline

FORCESPRO User Manual

The second method is the LSQBivariateSpline of SciPy:

Matlab

Python

f = ForcesInterpolationFit_LSQBivariateSpline(x, y, z, tx, ty, w=ones(1, length(x)),␣
→˓bbox=[min(x, tx), max(x, tx), min(y, ty), max(y, ty)], kx=3, ky=3, rankTol=1e-16,␣
→˓scaling=[1, 1, 1], casadiOptions=struct());

f = forcespro.modelling.InterpolationFit_LSQBivariateSpline(x, y, z, tx, ty, w=np.
→˓ones((1, len(x))), bbox=[min(x, tx), max(x, tx), min(y, ty), max(y, ty)], kx=3,␣
→˓ky=3, eps=1e-16, scaling=[1, 1, 1], casadiOptions={})

All the arguments up to scaling are SciPy specific arguments, which can be found here: here
(LSQBivariateSpline).

It additionally supports scaling of the spline inputs/outputs, which affects the numerical sta-
bility of the spline fitting routine. The scaling is automatically taken care of, so that the in-
puts/outputs to the resulting spline are still the physical quantities.

The fitted coefficients of SciPy are provided to forcespro.modelling.Interpolation2D, which
is a wrapper for casadi.Function.bspline, where casadiOptions are optional CasADi-function
specific options. The returned f is a function handle taking as input the two inputs to the
lookup table and returning the lookup table value: z=f(x, y).

19.2.5 Application Example

This example showcases how to generate splines from a 2D lookup table using the different
provided functionalities.

Importantly, only the SMOOTH method was tuned properly, while LSQ and GRIDDED are tuned
more roughly. Moreover, in this example, the coefficients provided to COEFF and PARAMETRIC
are taken from the SMOOTH fitting solution.

The utilized 2D lookup represents the electric motor efficiency and is generated from figures
in [JiaJibGor20_2D_modelling]. The 2D lookup table is stored as a matrix, where the rows
correspond to the traction force, the columns to the velocity and each matrix entry represents
the corresponding electric motor efficiency:

Matlab

Python

spline_method = 'SMOOTH'; % 'SMOOTH', 'LSQ', 'COEFF', 'GRIDDED', 'PARAMETRIC'

vMax = 50; % maximum velocity in the lookup table [m/s]
FtMax = 5e3; % maximum traction force in the lookup table [N]

vSampleOrig = 0:vMax/10:vMax;
FtSampleOrig = 0:FtMax/5:FtMax;

vSampleOrig = [vSampleOrig(1), mean(vSampleOrig(1:2)), vSampleOrig(2:end)];
FtSampleOrig = [FtSampleOrig(1), mean(FtSampleOrig(1:2)), FtSampleOrig(2:end)];

% The data is taken from "Jia, Y.; Jibrin, R.; Goerges, D.: Energy-Optimal
% Adaptive Cruise Control for Electric Vehicles Based on Linear and
% Nonlinear Model Predictive Control. In: IEEE Transactions on Vehicular
% Technology, vol. 69, no. 12, pp. 14173-14187, Dec. 2020."
% v [m/s] = 0, 2.5, 5, 10, 15, 20, 25, 30, 35, 40, 45,␣

(continues on next page)

458 Chapter 19. Modelling Utilities

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQBivariateSpline.html#scipy.interpolate.LSQBivariateSpline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQBivariateSpline.html#scipy.interpolate.LSQBivariateSpline

FORCESPRO User Manual

(continued from previous page)

→˓ 50
etaSampleOrig = [

0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50,␣
→˓0.50; ... % F [N] = 0

0.50, 0.68, 0.80, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.83,␣
→˓0.81; ... % F [N] = 500

0.50, 0.78, 0.81, 0.88, 0.88, 0.88, 0.88, 0.88, 0.85, 0.83, 0.81,␣
→˓0.80; ... % F [N] = 1000

0.50, 0.75, 0.81, 0.85, 0.88, 0.85, 0.83, 0.81, 0.78, 0.68, 0.65,␣
→˓0.63; ... % F [N] = 2000

0.50, 0.68, 0.80, 0.83, 0.83, 0.81, 0.78, 0.68, 0.65, 0.63, 0.60,␣
→˓0.57; ... % F [N] = 3000

0.50, 0.67, 0.78, 0.81, 0.80, 0.78, 0.65, 0.63, 0.60, 0.57, 0.55,␣
→˓0.55; ... % F [N] = 4000

0.50, 0.67, 0.75, 0.78, 0.75, 0.65, 0.63, 0.60, 0.57, 0.55, 0.52,␣
→˓0.52; ... % F [N] = 5000

];

% convert to 1-D sequences of data points
[vTemp, FtTemp] = meshgrid(vSampleOrig, FtSampleOrig);
vSample = reshape(vTemp.', 1, []);
FtSample = reshape(FtTemp.', 1, []);
etaSample = reshape(etaSampleOrig.', [1, numel(etaSampleOrig)]);

% spline
if strcmp(spline_method, 'SMOOTH')

s = 0.025;
w = ones(1, length(vSample));
bbox = [min(vSample), max(vSample), min(FtSample), max(FtSample)];
kx = 3;
ky = 3;
rankTol = 1e-8;
scaling = [1e1, 1e3, 1];
etaMotorSpline = ForcesInterpolationFit_SmoothBivariateSpline(vSample, FtSample,␣

→˓etaSample, w, bbox, kx, ky, s, rankTol, scaling);
elseif strcmp(spline_method, 'LSQ')

tx = 30;
ty = 3000;
w = ones(1, length(vSample));
bbox = [min([vSample, tx]), max([vSample, tx]), min([FtSample, ty]),␣

→˓max([FtSample, ty])];
kx = 3;
ky = 3;
rankTol = 1e-8;
scaling = [1e1, 1e3, 1];
etaMotorSpline = ForcesInterpolationFit_LSQBivariateSpline(vSample, FtSample,␣

→˓etaSample, tx, ty, w, bbox, kx, ky, rankTol, scaling);
elseif strcmp(spline_method, 'COEFF')

kx = 3;
ky = 3;
tx = [0, 0, 0, 0, 6.3993742001266, 24.1805094335686, 50, 50, 50, 50];
ty = [0, 0, 0, 0, 760.320551795358, 1503.23831410745, 5000, 5000, 5000, 5000];
% matrix-indexed coefficient matrix
coeffs = [0.498727471092637 0.511037494098402 0.524901875945660 0.

→˓548511907792580 0.475607487652389 0.513135686437586
0.498465143841756 0.654046675851965 0.783006359203673 0.

(continues on next page)

Chapter 19. Modelling Utilities 459

FORCESPRO User Manual

(continued from previous page)

→˓713858506960411 0.676705972846789 0.681154627267599
0.510442836827170 0.854158083414314 1.007125597517271 0.

→˓847628255554849 1.018658592375758 0.878826758082995
0.495093430686428 0.735511289747710 0.857756122056489 0.

→˓863078750613390 0.548595365620131 0.497927393614425
0.510240152112442 0.835399001169469 0.952683895958243 0.

→˓536982511482952 0.563982968586042 0.577416237725016
0.501474795696226 0.773879473939183 0.878143062979889 0.

→˓444534437467682 0.615960539904494 0.508404545245928];

etaMotorSpline = ForcesInterpolation2D(tx, ty, coeffs, kx, ky);
elseif strcmp(spline_method, 'GRIDDED')

xgrid = vSampleOrig;
ygrid = FtSampleOrig;
Z = etaSampleOrig.'; % switch indexing: caartesian -> matrix
scaling = [1e1, 1e3, 1];
kx = 3;
ky = 3;
casadiOptions = struct('degree', [kx, ky]);

etaMotorSpline = ForcesInterpolation2DGridded(xgrid, ygrid, Z, scaling,␣
→˓casadiOptions);
elseif strcmp(spline_method, 'PARAMETRIC')

kx = 3;
ky = 3;
tx = [0, 0, 0, 0, 6.3993742001266, 24.1805094335686, 50, 50, 50, 50];
ty = [0, 0, 0, 0, 760.320551795358, 1503.23831410745, 5000, 5000, 5000, 5000];
% matrix-indexed coefficient matrix
coeffs = [0.498727471092637 0.511037494098402 0.524901875945660 0.

→˓548511907792580 0.475607487652389 0.513135686437586
0.498465143841756 0.654046675851965 0.783006359203673 0.

→˓713858506960411 0.676705972846789 0.681154627267599
0.510442836827170 0.854158083414314 1.007125597517271 0.

→˓847628255554849 1.018658592375758 0.878826758082995
0.495093430686428 0.735511289747710 0.857756122056489 0.

→˓863078750613390 0.548595365620131 0.497927393614425
0.510240152112442 0.835399001169469 0.952683895958243 0.

→˓536982511482952 0.563982968586042 0.577416237725016
0.501474795696226 0.773879473939183 0.878143062979889 0.

→˓444534437467682 0.615960539904494 0.508404545245928];

numel_coeffs = numel(coeffs);
etaMotorSpline = ForcesInterpolation2DParametric(numel_coeffs, tx, ty, kx, ky);

else
error('Chosen spline_method is not valid');

end

% plotting
vMesh = 0:1:vMax;
FtMesh = 0:100:FtMax;
[vMesh, FtMesh] = meshgrid(vMesh, FtMesh);

if strcmp(spline_method, 'PARAMETRIC')
etaMesh = full(etaMotorSpline(vMesh(:).', FtMesh(:).', coeffs(:))); % X/Y must be␣

→˓row-vectors
else

(continues on next page)

460 Chapter 19. Modelling Utilities

FORCESPRO User Manual

(continued from previous page)

etaMesh = full(etaMotorSpline(vMesh(:), FtMesh(:))); % sparse -> dense
end
etaMesh = reshape(etaMesh, size(vMesh, 1), size(vMesh, 2));

figure;
surf(vMesh, FtMesh, etaMesh);
xlabel("v [m/s]")
ylabel("Ft [N]")
title("Motor Efficiency")

figure;
contourf(vMesh, FtMesh, etaMesh, unique(etaSampleOrig)', 'ShowText',true)
xlabel("v [m/s]")
ylabel("Ft [N]")
title("Motor Efficiency")

import numpy as np
import matplotlib.pyplot as plt
from enum import Enum, auto

class SplineMethod(Enum):
SMOOTH = auto()
LSQ = auto()
COEFF = auto()
GRIDDED = auto()
PARAMETRIC = auto()

spline_method = SplineMethod.SMOOTH

vMax = 50 # maximum velocity in the lookup table [m/s]
FtMax = 5e3 # maximum traction force in the lookup table [N]

vSampleOrig = np.linspace(0, vMax, 11)
FtSampleOrig = np.linspace(0, FtMax, 6)

vSampleOrig = np.insert(vSampleOrig, 1, np.mean(vSampleOrig[0:2]))
FtSampleOrig = np.insert(FtSampleOrig, 1, np.mean(FtSampleOrig[0:2]))

The data is taken from "Jia, Y.; Jibrin, R.; Goerges, D.: Energy-Optimal
Adaptive Cruise Control for Electric Vehicles Based on Linear and
Nonlinear Model Predictive Control. In: IEEE Transactions on Vehicular
Technology, vol. 69, no. 12, pp. 14173-14187, Dec. 2020."
v [m/s] = 0, 2.5, 5, 10, 15, 20, 25, 30, 35, 40, 45,
→˓ 50
etaSampleOrig = [

[0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50,
→˓ 0.50], # F [N] = 0

[0.50, 0.68, 0.80, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.83,
→˓ 0.81], # F [N] = 500

[0.50, 0.78, 0.81, 0.88, 0.88, 0.88, 0.88, 0.88, 0.85, 0.83, 0.81,
→˓ 0.80], # F [N] = 1000

[0.50, 0.75, 0.81, 0.85, 0.88, 0.85, 0.83, 0.81, 0.78, 0.68, 0.65,
→˓ 0.63], # F [N] = 2000

[0.50, 0.68, 0.80, 0.83, 0.83, 0.81, 0.78, 0.68, 0.65, 0.63, 0.60,
→˓ 0.57], # F [N] = 3000

[0.50, 0.67, 0.78, 0.81, 0.80, 0.78, 0.65, 0.63, 0.60, 0.57, 0.55,
(continues on next page)

Chapter 19. Modelling Utilities 461

FORCESPRO User Manual

(continued from previous page)

→˓ 0.55], # F [N] = 4000
[0.50, 0.67, 0.75, 0.78, 0.75, 0.65, 0.63, 0.60, 0.57, 0.55, 0.52,

→˓ 0.52] # F [N] = 5000
]

etaSampleOrig = np.array(etaSampleOrig)

convert to 1d sequences of data points
[vTemp, FtTemp] = np.meshgrid(vSampleOrig, FtSampleOrig)
vSample = vTemp.flatten()
FtSample = FtTemp.flatten()
etaSample = etaSampleOrig.flatten()

spline
if spline_method == SplineMethod.SMOOTH:

s = 0.025
w = np.ones((1, len(vSample)))
bbox = [min(vSample), max(vSample), min(FtSample), max(FtSample)]
kx = 3
ky = 3
eps = 1e-8
scaling = [1e1, 1e3, 1]
etaMotorSpline = forcespro.modelling.InterpolationFit_

→˓SmoothBivariateSpline(x=vSample, y=FtSample, z=etaSample, w=w, bbox=bbox, kx=kx,␣
→˓ky=ky, s=s, eps=eps, scaling=scaling)
elif spline_method == SplineMethod.LSQ:

tx = [30.]
ty = [3000.]
w = np.ones((1, len(vSample)))
bbox = [min(np.append(vSample, tx)), max(np.append(vSample, tx)), min(np.

→˓append(FtSample, ty)), max(np.append(FtSample, ty))]
kx = 3
ky = 3
eps = 1e-8
scaling = [1e1, 1e3, 1]
etaMotorSpline = forcespro.modelling.InterpolationFit_

→˓LSQBivariateSpline(x=vSample, y=FtSample, z=etaSample, tx=tx, ty=ty, w=w, bbox=bbox,
→˓ kx=kx, ky=ky, eps=eps, scaling=scaling)
elif spline_method == SplineMethod.COEFF:

kx = 3
ky = 3
tx = np.array([0, 0, 0, 0, 6.3993742001266, 24.1805094335686, 50, 50, 50, 50])
ty = np.array([0, 0, 0, 0, 760.320551795358, 1503.23831410745, 5000, 5000, 5000,␣

→˓5000])
coeffs = np.array([

[0.498727471092637, 0.511037494098402, 0.524901875945660,␣
→˓ 0.548511907792580, 0.475607487652389, 0.513135686437586],

[0.498465143841756, 0.654046675851965, 0.783006359203673,␣
→˓ 0.713858506960411, 0.676705972846789, 0.681154627267599],

[0.510442836827170, 0.854158083414314, 1.007125597517271,␣
→˓ 0.847628255554849, 1.018658592375758, 0.878826758082995],

[0.495093430686428, 0.735511289747710, 0.857756122056489,␣
→˓ 0.863078750613390, 0.548595365620131, 0.497927393614425],

[0.510240152112442, 0.835399001169469, 0.952683895958243,␣
→˓ 0.536982511482952, 0.563982968586042, 0.577416237725016],

[0.501474795696226, 0.773879473939183, 0.878143062979889,␣
→˓ 0.444534437467682, 0.615960539904494, 0.508404545245928]

(continues on next page)

462 Chapter 19. Modelling Utilities

FORCESPRO User Manual

(continued from previous page)

])

etaMotorSpline = forcespro.modelling.Interpolation2D(tx, ty, coeffs, kx, ky)
elif spline_method == SplineMethod.GRIDDED:

xgrid = vSampleOrig
ygrid = FtSampleOrig
Z = etaSampleOrig.T # switch indexing: caartesian -> matrix
scaling = [1e1, 1e3, 1]
kx = 3
ky = 3
casadiOptions = {'degree': (kx, ky)}

etaMotorSpline = forcespro.modelling.Interplation2DGridded(xgrid, ygrid, Z,␣
→˓scaling, casadiOptions)
elif spline_method == SplineMethod.PARAMETRIC:

kx = 3
ky = 3
tx = np.array([0, 0, 0, 0, 6.3993742001266, 24.1805094335686, 50, 50, 50, 50])
ty = np.array([0, 0, 0, 0, 760.320551795358, 1503.23831410745, 5000, 5000, 5000,␣

→˓5000])
coeffs = np.array([

[0.498727471092637, 0.511037494098402, 0.524901875945660,␣
→˓ 0.548511907792580, 0.475607487652389, 0.513135686437586],

[0.498465143841756, 0.654046675851965, 0.783006359203673,␣
→˓ 0.713858506960411, 0.676705972846789, 0.681154627267599],

[0.510442836827170, 0.854158083414314, 1.007125597517271,␣
→˓ 0.847628255554849, 1.018658592375758, 0.878826758082995],

[0.495093430686428, 0.735511289747710, 0.857756122056489,␣
→˓ 0.863078750613390, 0.548595365620131, 0.497927393614425],

[0.510240152112442, 0.835399001169469, 0.952683895958243,␣
→˓ 0.536982511482952, 0.563982968586042, 0.577416237725016],

[0.501474795696226, 0.773879473939183, 0.878143062979889,␣
→˓ 0.444534437467682, 0.615960539904494, 0.508404545245928]

])

numel_coeffs = coeffs.size
etaMotorSpline = forcespro.modelling.Interpolation2DParametric(numel_coeffs=numel_

→˓coeffs, tx=tx, ty=ty, kx=kx, ky=ky)
else:

raise ValueError("Chosen spline_method is not valid")

plotting
vMesh = np.linspace(0, vMax, 51)
FtMesh = np.linspace(0, FtMax, 51)
vMesh, FtMesh = np.meshgrid(vMesh, FtMesh)

if spline_method == SplineMethod.PARAMETRIC:
etaMesh = np.array(etaMotorSpline(np.expand_dims(vMesh.flatten(), 0), np.expand_

→˓dims(FtMesh.flatten(), 0), coeffs.flatten('F'))).squeeze() # X/Y must be row-vectors
else:

etaMesh = np.array(etaMotorSpline(vMesh.flatten(), FtMesh.flatten())).squeeze()
etaMesh = etaMesh.reshape(vMesh.shape)

fig = plt.figure(figsize=(8, 6))
ax = plt.axes(projection="3d")

(continues on next page)

Chapter 19. Modelling Utilities 463

FORCESPRO User Manual

(continued from previous page)

surf = ax.plot_surface(vMesh, FtMesh, etaMesh, cmap='viridis', edgecolor='black',␣
→˓linewidth=0.5)
ax.set_xlabel("v [m/s]")
ax.set_ylabel("Ft [N]")
ax.set_title("Motor Efficiency")

fig = plt.figure(figsize=(8, 6))
cnt = plt.contour(vMesh, FtMesh, etaMesh, levels=np.unique(etaSampleOrig), colors=
→˓"black")
plt.clabel(cnt, colors="black")
plt.contourf(vMesh, FtMesh, etaMesh, levels=np.unique(etaSampleOrig))
plt.xlabel("v [m/s]")
plt.ylabel("Ft [N]")
plt.title("Motor Efficiency")

plt.show()

19.3 Smooth Approximations

There are a number of useful basic functions that are not differentiable everywhere. For some
of them FORCESPRO provides a built-in smooth approximation and we plan to add more in
an upcoming release.

19.3.1 Smooth Minimum

The minimum value of two scalars is not differentiable at the points where both values are
identical. You can use the following smooth approximation instead:

Matlab

Python

c = ForcesMin(a, b);

c = forcespro.modelling.smooth_min(a, b)

This function accepts an optional third argument to trade-off smoothness and approximation
quality. The default value is set to 1e-8; higher values make the function smoother but less
accurate.

19.3.2 Smooth Maximum

The maximum value of two scalars is not differentiable at the points where both values are
identical. You can use the following smooth approximation instead:

Matlab

Python

c = ForcesMax(a, b);

c = forcespro.modelling.smooth_max(a, b)

464 Chapter 19. Modelling Utilities

FORCESPRO User Manual

This function accepts an optional third argument to trade-off smoothness and approximation
quality. The default value is set to 1e-8; higher values make the function smoother but less
accurate.

Chapter 19. Modelling Utilities 465

FORCESPRO User Manual

466 Chapter 19. Modelling Utilities

FORCESPRO User Manual

Chapter 20

Dumping Problem Formulation
and Data

• Why to use the dump tool?

• How to use the dump tool?

– Symbolic dumps

– Legacy dumps

– Problem dumps from C

20.1 Why to use the dump tool?

Along with its clients, FORCESPRO provides a tool that allows the user to dump the formula-
tion and actual data of an optimization problem. This information allows to exactly reproduce
the same solver for a given formulation and to feed it with exactly the same data to yield ex-
actly the same results (provided it is run on the very same target hardware). The problem
formulation and data is stored in “stand-alone” mat or json files, and the problem data can
also be saved in binary format. This means there is no need to keep copies of other files that
may be used to specify the formulation (such as the dynamic equations), except for formu-
lations relying on external callbacks provided as C code (see External function evaluations in
C).

The dump tool may be helpful for a couple of use cases such as:

• Debugging: a dumped problem allows you to re-run single solver calls without the need
to have your full simulation environment up and running.

• External support: you may send a dumped problem to whomever is in charge of pro-
viding support and it will enable that person to exactly reproduce your issue.

• Testing: keeping dumps of problems that performed as expected can be used to run
regression tests to ensure they work as expected after future changes.

Note that, depending on the dump type you choose (see How to use the dump tool?), the
dump tool either stores your problem formulation on a symbolic level or keeps a copy of the
C code generated by the automatic differentiation tool. Thus, keep the following in mind:

Important: A dumped problem will contain complete information about the solver that
you have setup. In particular, it may be used to reverse-engineer your problem formulation

467

FORCESPRO User Manual

(including dynamic model, objective function, constraints etc.). Thus, only share a dumped
problem with persons that have a right to obtain this information.

20.2 How to use the dump tool?

The dump tool currently provides three different dump types. Section Symbolic dumps de-
scribes the default symbolic dump tool which stores the full symbolic formulation, but re-
quires CasADi v3.5.x to work. Section Legacy dumps describes the so-called legacy dump
that is available in the MATLAB client only and does not store the full symbolic formulation.
In section Problem dumps from C, you learn how to dump a problem struct (containing the
runtime parameters) from C. This is useful when you work on the embedded system and you
don’t want to use the MATLAB and Python interface for dumping.

Note: In the Python client, code generation and dumping are not interchangeable, as code
generation mutates the CodeOptions and SymbolicModel objects.

To get around this issue, use Python’s copy.deepcopy function to make a copy which will not
affected by code generation.

Note, that calling copy.copy makes a shallow copy and will contain references to the original
object and will thus also mutate.

20.2.1 Symbolic dumps

Symbolic dumps direcly store symbolic expressions of your problem formulation and codeop-
tions after converting both into the text-based JSON format. From FORCESPRO v6.1.0 on-
wards, this is the default dump tool if not otherwise specified. Note that this variant reveals
your complete problem formulation to anybody with whom you share those JSON files! While
you should thus handle those symbolic dumps with care, they offer more flexibility than the
legacy dumps and are also available via the Python client of FORCESPRO.

Creating a symbolic dump of a problem consists of two steps:

1. Dumping the problem formulation: you need to store your model or stages struct, the
codeoptions struct and optionally the outputs struct, which can be done even before
generating the actual solver code.

2. Dumping problem data: for each problem instance, the problem params struct needs to
be stored. It is possible to store data of multiple problem instances for the same problem
formulation (in either a single file or multiple files).

Both steps may also be performed at once.

Dumping the problem formulation

For dumping the problem formulation in a symbolic way, just call the following function:

Matlab

Python

% For the high-level interface:
[tag, fullFilename] = ForcesDumpFormulation(model,codeoptions,outputs,...

label,dumpDirectory);

(continues on next page)

468 Chapter 20. Dumping Problem Formulation and Data

FORCESPRO User Manual

(continued from previous page)

% For the low-level interface:
[tag, fullFilename] = ForcesDumpFormulationLowLevel(stages,codeoptions,outputs,....

params,label,dumpDirectory);

For the high-level interface:
tag,full_filename = forcespro.dump.save_formulation(modelOrStages, codeoptions,␣
→˓outputs,

label, dump_directory)

For the low-level interface:
tag,full_filename = forcespro.dump.save_formulation(modelOrStages, label, dump_
→˓directory)

In MATLAB, the last argument enables the use of a symbolic dump. This parameter is not
required in Python since there is only the symbolic way to dump problems. In Python, the
argument modelOrStages refers to the model or stages object, for the high-level interface or
the low-level interface, respectively. Pass outputs if your problem formulation contains out-
puts. Moreover, you may pass an additional label used inside the filenames (or pass an empty
string) and dumpDirectory (keyword path in Python) for storing the dumped file (the default is
the current working directory). When called this way, the function ForcesDumpFormulation will
create a json file in the specified directory containing the passed information. The filename
is automatically chosen and will contain the name of your solver, your label, a unique tag,
a timestamp as well as the suffix _F, e.g. myFORCESsolver_ABC3DEFGHIJ_20200101120000000_F.
json. The returned string fullFilename consists of the dump directory and the filename of
the dump.

Note that this function returns a tag that is unique for a given formulation and code options.
It is strongly recommended to use it when dumping corresponding problem data. However,
the MATLAB and the Python client generate different tags for the same mathematical for-
mulation.

Note that for Python low-level dumps, specifying options or outputs does nothing and is ig-
nored, as these should be included in the stages object.

Note: For Python low-level dumps, code generation and dumping are not interchangeable,
as code generation mutates the CodeOptions object.

To get around this issue, use Python’s copy.deepcopy function to make a copy which will not
be affected by code generation.

Note: Also note that formulations making use of CasADi MX expressions (see Automatic
differentiation expression class) currently cannot be dumped.

Dumping problem data

Assuming your generated FORCESPRO solver is called myFORCESsolver and you are calling it
with the following command

Matlab

Python

[output, exitflag, info] = myFORCESsolver(problem);

Chapter 20. Dumping Problem Formulation and Data 469

FORCESPRO User Manual

output, exitflag, info = my_forces_solver.solve(problem);

then dumping the problem data of any problem instance is as simple as calling

Matlab

Python

% For the high-level interface:
fullFilename = ForcesDumpProblem(problems,tag,dumpDirectory);

% For the low-level interface:
fullFilename = ForcesDumpProblemLowLevel(problems,tag,dumpDirectory);

full_filename = forcespro.dump.save_problem(problems, tag, dump_directory)

You can pass as problems either a single problem parameter struct (dictionary in Python)
or a cell array (list in Python) of problem parameter structs. Besides, the unique tag that
has been generated when dumping the problem formulation is required. The third ar-
gument dumpDirectory for storing the dumped problem data is optional (with the default
being the current working directory). The functions ForcesDumpProblem or forcespro.dump.
save_formulation will create a json file in the specified directory containing the passed in-
formation. The filename is automatically chosen and will contain the name of your solver,
the unique tag (including any label passed when dumping the formulation), a timestamp as
well as the suffix _P, e.g. myFORCESsolver_ABC3DEFGHIJ_20200101120001000_P.json. The returned
string fullFilename consists of the dump directory and the filename of the dump.

There is no limit on the number of problem instances that you may dump that way.

Dumping the problem formulation and data at once

For dumping both the problem formulation and all problem data at once in a symbolic way
to a single json file, just call the following function:

Matlab

Python

% For the high-level interface:
[tag, fullFilename] = ForcesDumpAll(model,codeoptions,outputs,...

label,dumpDirectory,problems);

% For the low-level interface:
[tag, fullFilename] = ForcesDumpAllLowLevel(stages,codeoptions,outputs,...

params,label,dumpDirectory,problems);

tag, full_filename = forcespro.dump.save_all(modelOrStages, codeoptions, outputs, \
label, dump_directory, problems)

The arguments and behavior are the same as for the functions used to dump formulation and
problem separately (see Dumping the problem formulation and Dumping problem data).
The only difference is that formulation and problems are dumped to a single file with suffix _A,
e.g. myFORCESsolver_ABC3DEFGHIJ_20200101120000000_A.json

Running a dumped problem

After you have dumped a problem formulation and at least one set of problem data, you can
use either a matching pair of _F/_P files or a single _A file in JSON format to exactly reproduce

470 Chapter 20. Dumping Problem Formulation and Data

FORCESPRO User Manual

your solver and problem instances. To do so, you need to perform the following two steps:

1. Load problem formulation and data from JSON file or files by calling:

Matlab

Python

% For the high-level interface:
[model, codeoptions, outputs, additionalData, problems] = ...

ForcesLoadSymbolicDump(formulationFilename,problemFilenames␣
→˓);

% For the low-level interface:
[stages, codeoptions, outputs, params, problems] = ForcesLoadLowLevelDump(␣
→˓formulationFilename, problemFilenames);

modelOrStages, options, outputs, additional, problems = \
forcespro.dump.load(formulation_filename, problem_filename)

problemFilenames may either be a single file name or a cell array (list in Python) con-
taining all the problem data set that you want to load. In case you have dumped
both formulation and problem data set(s) at once within a single file, just pass
that one as formulationFilename and do not specify problemFilenames. The returned
problems variable is an array (list in Python) containing all problem sets found in the
dumps.

2. Re-generating and running the solver with dumped information by simply calling:

Matlab

Python

% For the high-level interface:
FORCES_NLP(model,codeoptions,outputs);

% For the low-level interface:
generateCode(stages,params,codeoptions,outputs);

myFORCESsolver(problems(1));
% and more problem instances if present

For the high-level interface:
solver = model.generate_solver(codeoptions, outputs)
result, exitflag, info = solver.solve(problems[1])
and more problem instances if present

For the low-level interface:
stages.generateCode(get_userid.userid)
import my_forces_solver_py
result, exitflag, info = my_forces_solver_py.my_forces_solver_
→˓solve(problems[1])
and more problem instances if present

Tip: To get the filenames of dumped problems and formulations in a directory, simply use
the function:

Matlab

Python

Chapter 20. Dumping Problem Formulation and Data 471

FORCESPRO User Manual

[formulationFilename, problemFilename] = ForcesFindDumpedProblems(tag,dumpDirectory␣
→˓);

formulation_filename, problem_filenames = forcespro.dump.find_problems(tag, dump_
→˓directory)

Both arguments are optional. If tag is not given, the function returns any dumped file-
names regardless of their tag. The default dumpDirectory is the current working directory.
problemFilenames is a cell array (list in Python) of problem filenames.

Important: Matlab support for low-level dumps has been added in FORCESPRO version
6.1.0, and low-level dumps created with an earlier version (from Python) can’t be loaded in
Matlab.

Limitations of symbolic dumps

Symbolic dumps only work with CasADi v3.5.x for reasons beyond our control, which is why
we currently do not plan to extend support to CasADi v2.4.2 or MathWorks’ Symbolic Math
Toolbox.

20.2.2 Legacy dumps

Legacy dumps are available for the MATLAB client only and store a pre-processed problem
formulation including C code generated by the automatic differentiation tool. This variant is
somewhat less explicit and is supposed to work with all supported AD tools.

Creating a legacy dump of a problem consists of two steps:

1. Dumping the problem formulation: once a new solver has been generated, a
formulation struct, the codeoptions struct and optionally the outputs struct need to be
stored.

2. Dumping problem data: for each problem instance, the problem params struct needs to
be stored. It is possible to store data of multiple problem instances for the same problem
formulation.

Dumping the problem formulation

For dumping the problem formulation, the following three steps need to be taken:

1. Enabling creation of a formulation dump: This is done by using the option

codeoptions.dump_formulation = 1;

2. Obtaining the dumped formulation: Calling FORCES_NLP with the before-mentioned
code option enabled will make it return a formulation struct as third output argument

[stages, codeoptions, formulation] = FORCES_NLP(model, codeoptions, outputs);

3. Storing the necessary structs into a file: After calling FORCES_NLP, you should use the
following function to store both the formulation and codeoptions struct

[tag, fullFilename] = ForcesDumpFormulation(formulation,codeoptions,outputs,
→˓label,dumpDirectory,ForcesDumpType.LegacyDumpGeneratedC);

472 Chapter 20. Dumping Problem Formulation and Data

FORCESPRO User Manual

Pass outputs if your problem formulation contains outputs. Moreover, you may pass an
additional label used inside the filenames (or pass an empty string) and dumpDirectory
for storing the dumped formulation (the default is the current working directory). The
function ForcesDumpFormulation will create a mat file in the specified directory contain-
ing the passed information. The filename is automatically chosen and will contain the
name of your solver, your label, a unique tag, a timestamp as well as the suffix _F, e.g.
myFORCESsolver_ABC3DEFGHIJ_20200101120000000_F.mat. The returned fullFilename is a string
consisting of the directory and the filename of the dump.

Note that this function returns a tag that is unique for a given formulation and code options.
It is strongly recommended to use it when dumping corresponding problem data. Note that
the MATLAB and the Python client generate different tags for the same mathematical for-
mulation.

Dumping problem data

Assuming your generated FORCESPRO solver is called myFORCESsolver and you are calling it
with the following command

[output, exitflag, info] = myFORCESsolver(problem);

then dumping the problem data of any problem instance is as simple as calling

fullFilename = ForcesDumpProblem(problem,tag,dumpDirectory,ForcesDumpType.
→˓LegacyDumpGeneratedC);

Here, you need to provide both the problem parameter struct as well as the unique
tag that has been generated when dumping the problem formulation. The third argu-
ment dumpDirectory for storing the dumped problem data is optional (with the default be-
ing the current working directory). The function ForcesDumpProblem will create a mat file
in the specified directory containing the passed information. The filename is automati-
cally chosen and will contain the name of your solver, the unique tag (including any la-
bel passed when dumping the formulation), a timestamp as well as the suffix _P, e.g.
myFORCESsolver_ABC3DEFGHIJ_20200101120001000_P.mat. The returned fullFilename is a string
consisting of the directory and the filename of the dump.

There is no limit on the number of problem instances that you may dump that way.

Running a dumped problem

After you have dumped a problem formulation and at least one set of problem
data, you can use those mat files to exactly reproduce your solver and problem in-
stances. To do so, you need to perform the following two steps (where we assume
you have stored the two files myFORCESsolver_ABC3DEFGHIJ_20200101120000000_F.mat and
myFORCESsolver_ABC3DEFGHIJ_20200101120001000_P.mat at a location in your MATLAB path):

1. Re-generate the FORCESPRO solver by loading the formulation mat file and using its
content to call the code generation:

F = load('myFORCESsolver_ABC3DEFGHIJ_20200101120000000_F.mat');
FORCES_NLP(F.formulation,F.codeoptions,F.outputs);

This will re-create the solver MEX function myFORCESsolver. Note that the third input
struct containing the outputs is only available if you included it into your dump.

2. Running the solver with dumped problem data by loading the data mat file and using
its content to call the generated solver:

Chapter 20. Dumping Problem Formulation and Data 473

FORCESPRO User Manual

P = load('myFORCESsolver_ABC3DEFGHIJ_20200101120001000_P.mat');
myFORCESsolver(P.problem);

You may repeat this step for as many problem instances as you have dumped.

Tip: To get the filenames of dumped problems and formulations in a directory, simply use
the function:

[formulationFilename, problemFilename] = ForcesFindDumpedProblems(tag,dumpDirectory␣
→˓);

Both arguments are optional. If tag is not given, the function returns any dumped file-
names regardless of their tag. The default dumpDirectory is the current working directory.
problemFilenames is a cell array of problem filenames.

Limitations of legacy dumps

Legacy dumps have the following limitations:

• They are only available via the MATLAB client of FORCESPRO.

• They cannot be used if you pass external functions in form of C code.

• They cannot be used in combination with CasADi MX expressions (see Automatic differ-
entiation expression class).

These limitations can be overcome by using a symbolic dump (see Symbolic dumps).

20.2.3 Problem dumps from C

Problem dumps from C consider only the params struct containing the runtime parameters
that are passed to the solver in each solver call. In order to save or load params structs, you
can call the dump tool from any C script. This offers the opportunity to work directly on the
embedded system. The data is stored in binary format. The problem dumps from C use the
msgpack-c library.

Important: The problem dumps from C require dynamic memory allocation. This is be-
cause of the dependency on the msgpack-c library. Please check if your embedded platform
supports dynamic memory allocation.

Before dumping problems from C for the first time, you need to install msgpack as described
in Download and install msgpack for C. Then, the dumping procedure consists of the follow-
ing three steps:

1. Enabling the generation of the dump functions: When generating your solver, you need
to set a codeoption in order to enable the generation of the dump functions.

2. Dumping problem data: Call the generated serialize function in order to dump a params
struct. Exactly one params struct can be stored at a time.

3. Loading problem data: Call the generated deserialize function in order to load a params
struct. Exactly one params struct can be stored at a time.

474 Chapter 20. Dumping Problem Formulation and Data

FORCESPRO User Manual

Download and install msgpack for C

Since the dump tool for problems from C requires msgpack, make sure you installed the
library. You can either clone the github repository or you can simply download msgpack as a
zip file. For the installation of the library, you need gcc >= 4.1.0 and cmake >= 2.8.1.

How to install:

• Windows:

1. Run cmake . in your terminal from the msgpack-c-c_master folder.

2. Open the generated msgpack.sln file (located in the same folder) in Visual Studio
and click Build. The generated library is located in msgpack-c-c_master/Debug.

• Other platforms:

1. Run cmake . in your terminal from the msgpack-c-c_master folder.

2. Run make. The generated library is located in msgpack-c-c_master.

For more information about the installation of msgpack, see the README.md on github.

Enable the Generation of the Dump Functions

Before generating your solver you need to enable the generation of the dump functions. You
can specify whether you want to dump from your host platform or/and from your target plat-
form. For dumping from the host platform set:

Matlab

Python

codeoptions.serializeCParamsHost = 1;

codeoptions.serializeCParamsHost = 1

and for dumping from your specified target platform set:

Matlab

Python

codeoptions.serializeCParamsTarget = 1;

codeoptions.serializeCParamsTarget = 1

Dumping Problem Data

This section explains how to write and run a C script that dumps your problem data based
on the high-level basic example (see High-level interface: Basic example). We assume your
C script is in the same folder as your generated solver.

You can find the code of this example script to try it out for yourself in the examples folder that
comes with your client.

1. Include your solver header called <solvername>.h. In the solver header, the
<solvername>_params struct and the dumping routines <solvername>_serialize and
<solvername>_deserialize are defined. Note that the params struct for binary prob-
lems is called <solvername>_binaryparams and for mixed integer problems it is
<solvername>_integerparams.

Chapter 20. Dumping Problem Formulation and Data 475

https://github.com/msgpack/msgpack-c/tree/c_master
https://github.com/msgpack/msgpack-c/archive/c_master.zip
https://github.com/msgpack/msgpack-c/tree/c_master

FORCESPRO User Manual

#include "FORCESNLPsolver/include/FORCESNLPsolver.h"

2. Create a params struct and fill it with your data:

/* create params struct */
FORCESNLPsolver_params params;

/* fill params struct with data */
params.xinit[0] = -4.;
params.xinit[1] = 2.;
for (int i = 0; i < 33; i++)
{

params.x0[i] = 0.0;
}

3. Choose a filename for the dump and call the serialization routine:

const char filename[] = "dump.msgpack";
int successSerialize = FORCESNLPsolver_serialize(¶ms, filename);

4. Compile your script:

$ <Compiler_exec> my_C_dump_script.c <compiled_solver> -L<msgpack_lib_path>␣
→˓-l<msgpack_lib> <additional_libs>

Where:

• <Compiler_exec> is your compiler (for example gcc)

• my_C_dump_script.c is your script that calls the serialize function (for example
serializationCParams_HighLevel_BasicExample.c)

• <compiled_solver> is your compiled solver library (static or shared):

– For Linux/MacOS/MinGW it is libFORCESNLPsolver.aor libFORCESNLPsolver.
so in the lib or lib_target directory

– For Windows it is FORCESNLPsolver_static.lib or FORCESNLPsolver.lib in
the lib or lib_target directory

• <msgpack_lib_path> specifies your path to the compiled msgpack library

– For Linux/MacOS/MinGW it is the path to your msgpack-c-c_master folder

– For Windows it is the path to your msgpack-c-c_master/Debug folder

• <msgpack_lib> specifies the name of the compiled msgpack library

– For the static library on Windows set it to msgpackc_import

– Otherwise, it is msgpackc

• <additional_libs> are possible libraries that need to be linked to resolve exist-
ing dependencies.

– For Linux/MacOS it’s usually necessary to link the math library (-lm)

– For Windows you usually need to link the iphlpapi.lib library (it’s dis-
tributed with the Intel Compiler, MinGW as well as Matlab) and some-
times some additional intel libraries (those are included in the FORCE-
SPRO client under the folder libs_Intel – if missing they are downloaded
after code generation)

The following shows how to compile the dump example script on Linux:

476 Chapter 20. Dumping Problem Formulation and Data

FORCESPRO User Manual

$ gcc serializationCParams_HighLevel_BasicExample.c FORCESNLPsolver/lib/
→˓libFORCESNLPsolver.so -L/path/to/msgpack-c -lmsgpackc -lm

Loading Problem Data

This section explains how to write and run a C script that loads a dumped C params struct
based on the high-level basic example (see High-level interface: Basic example). We assume
your C script is in the same folder as your generated solver.

You can find the code of this example script to try it out for yourself in the examples folder that
comes with your client.

1. Include your solver header called <solvername>.h.

#include "FORCESNLPsolver/include/FORCESNLPsolver.h"

2. Create an empty params struct:

FORCESNLPsolver_params dumped_params;

3. Call the deserialization routine and pass the filename you chose when dumping the
problem data:

int successDeserialize = FORCESNLPsolver_deserialize(&dumped_params,␣
→˓filename);

4. Compile your script:

$ <Compiler_exec> my_C_dump_script.c <compiled_solver> -L<msgpack_lib_path>␣
→˓-l<msgpack_lib> <additional_libs>

Where:

• <Compiler_exec> is your compiler (for example gcc)

• my_C_dump_script.c is your script that calls the deserialize function (for exam-
ple serializationCParams_HighLevel_BasicExample.c)

• <compiled_solver> is your compiled solver library (static or shared):

– For Linux/MacOS/MinGW it is libFORCESNLPsolver.aor libFORCESNLPsolver.
so in the lib or lib_target directory

– For Windows it is FORCESNLPsolver_static.lib or FORCESNLPsolver.lib in
the lib or lib_target directory

• <msgpack_lib_path> specifies your path to the compiled msgpack library

– For Linux/MacOS/MinGW it is the path to your msgpack-c-c_master folder

– For Windows it is the path to your msgpack-c-c_master/Debug folder

• <msgpack_lib> specifies the name of the compiled msgpack library

– For the static library on Windows set it to msgpackc_import

– Otherwise, it is msgpackc

• <additional_libs> are possible libraries that need to be linked to resolve exist-
ing dependencies.

– For Linux/MacOS it’s usually necessary to link the math library (-lm)

Chapter 20. Dumping Problem Formulation and Data 477

FORCESPRO User Manual

– For Windows you usually need to link the iphlpapi.lib library (it’s dis-
tributed with the Intel Compiler, MinGW as well as Matlab) and some-
times some additional intel libraries (those are included in the FORCE-
SPRO client under the folder libs_Intel – if missing they are downloaded
after code generation)

The following shows how to compile the dump example script on Linux:

$ gcc serializationCParams_HighLevel_BasicExample.c FORCESNLPsolver/lib/
→˓libFORCESNLPsolver.so -L/path/to/msgpack-c -lmsgpackc -lm

478 Chapter 20. Dumping Problem Formulation and Data

FORCESPRO User Manual

Chapter 21

Frequently asked questions

• Features of FORCESPRO

• Issues during code generation

• Issues when running the solver

• Simulink interface

• Code deployment

• Other topics

21.1 Features of FORCESPRO

• I have been using FORCES in the past. Why should I use FORCESPRO?

The development of the free version of FORCES by ETH (forces.ethz.ch) has been discontin-
ued, and the code generation service is no longer available.

The professional version of FORCESPRO comes with professional support, additional inter-
faces, and a large performance increase.

• Can FORCESPRO target dSpace hardware?

Yes, FORCESPRO can be seamlessly integrated in the dSpace design flow with the new
Simulink interface. For more details see dSPACE deployment through Simulink Coder and
dSPACE deployment through ConfigurationDesk.

• Can I use FORCESPRO for non-multistage programs?

Yes, FORCESPRO supports the case 𝑁 = 1, i.e. a general QCQP of the form

minimize
1

2
𝑧⊤𝐻𝑧 + 𝑓⊤𝑧

subject to 𝐷𝑧 = 𝑐

𝑧 ≤ 𝑧 ≤ 𝑧

𝐴𝑧 ≤ 𝑏

𝑧⊤𝑄𝑧 + 𝑞⊤𝑧 ≤ 𝑟

In order to use this feature, simply call stages=MultistageProblem(1) and fill in the matrices
as described in Low-level interface.

• I need to re-linearize the model of my plant each sampling time. Does FORCESPRO
support this?

479

FORCESPRO User Manual

When re-linearizing non-linear dynamics, you obtain in each sampling time a different matrix
𝐴, 𝐵 and also a new affine part 𝑔:

𝑥𝑘+1 = 𝐴𝑥𝑘 +𝐵𝑢𝑘 + 𝑔

FORCESPRO supports changing these variables at run-time by defining them as parameters.

21.2 Issues during code generation

• I get the following error message when generating code: Error downloading URL.
Your network connection may be down or your proxy settings improperly config-
ured.

Your current MATLAB configuration is not accepting our website’s SSL certificate. Please fol-
low this link to add our certificate to Matlab’s list of certificates manually. You can download
the embotech certificate using your browser.

• I get the following error message when generating code: Invalid MEX-file. The
specified module could not be found.

Please install the Visual Studio redistributable libraries from here.

• I get the following error when generating code: java.io.IOException: Server is not
responding, it might not support the current protocol. Missing ServerHello.

Some MATLAB versions and some Java installations give problems when communicating
using HTTPS from MATLAB. Please edit the file callSoapService.m. Search for the line

url = URL(endpoint);

and replace it with

url = URL([], endpoint, sun.net.www.protocol.https.Handler)

• I get the following error when generating code: java.io.IOException: The issuer can
not be found in the trusted CA list.

Some MATLAB versions and some Java installations give problems when communicating
using HTTPS from MATLAB. Please edit the file callSoapService.m. Search for the line

url = URL(endpoint);

and replace it with

url = URL([], endpoint, sun.net.www.protocol.https.Handler)

• I get the following error when generating code: javax.net.ssl.SSLException: Unrec-
ognized SSL message, plaintext connection?

If you are using the enterprise version of FORCESPRO (separate server in your company net-
work), had previously altered the file callSoapService.m to accept secure HTTP connections
and the enterprise server is listening on an HTTP port, you receive this error. To fix: Please edit
the file callSoapService.m. Search for the line

url = URL([], endpoint, sun.net.www.protocol.https.Handler)

and replace it by the default

url = URL(endpoint);

• I get the following error when generating code:

480 Chapter 21. Frequently asked questions

https://ch.mathworks.com/matlabcentral/answers/92506-how-can-i-configure-matlab-to-allow-access-to-self-signed-https-servers
https://www.microsoft.com/en-us/download/details.aspx?id=30679

FORCESPRO User Manual

Server was unable to process request. ---> There is no parameter that maps to c of␣
→˓stage 1

However, according to the multistage formulation, my 𝐷1 is empty in my problem, so 𝑐1
should also be empty.**

We recommend to reformulate the optimization variables for each stage so that 𝐷1 is not
empty for performance reasons.

If this is not possible and 𝐷1 must remain empty, then the inter-stage equality constraint
equations become

𝐶𝑖−1𝑧𝑖−1 +𝐷𝑖𝑧𝑖 = 𝑐𝑖−1

instead of

𝐶𝑖−1𝑧𝑖−1 +𝐷𝑖𝑧𝑖 = 𝑐𝑖

• I get the following error message when using the MATLAB interface: ’Unable to
cast object of type ‘csmatio.types.MLDouble’ to type ‘csmatio.types.MLStructure’.’

Please check that you have your MEX compiler correctly set up. If the problem persists please
send your MATLAB and platform settings to support@embotech.com.

• The code generation process gets stuck displaying Generating and compiling
code. . . and sometimes it returns an error after 10 minutes.

By default, the code is compiled will all optimizations turned on (-O3). When the size of your
code is large, typically when you have a long prediction horizon, it can take a very long time
to compile the code with all optimizations turned on. If this process takes too long the server
times out and returns a compilation error. You can reduce the compilation time by changing
the compiler optimization flags to -O0, -O1, or -O2. You can change this setting using the
following flag set to the appropriate value.

codeoptions.optlevel = 2;

21.3 Issues when running the solver

• When I run the solver in MATLAB I get the following error: ??? Error using ==>
TestSolver freopen of stdout did not work.

This is a printing error that occurs in some old versions of MATLAB because stdout is not
defined inside MEX files. Supported versions of MATLAB should not produce this error. You
can avoid this error by setting

codeoptions.printlevel = 0;

• My solver is producing a segmentation fault.

When the solver has a large amount of parameters or the problem is relatively large, compil-
ing with codeoptions.optlevel = 0; can produce a segmentation fault. Please try to increase
the value of codeoptions.optlevel or submit a bug report to support@embotech.com.

• ADMM does not converge for my problem.

Unlike interior-point methods, the convergence of ADMM depends on the problem scaling.
If the matrices for the problem data have very high condition numbers and norms, ADMM
can converge extremely slowly regardless of the algorithm parameters. In some cases, ADMM
might not converge at all due to severe accumulation of numerical errors.

However, often the problem is choosing the right ADMM parameters 𝜌 and 𝛼 to obtain fast
convergence of the algorithm.

Chapter 21. Frequently asked questions 481

mailto:support@embotech.com
mailto:support@embotech.com

FORCESPRO User Manual

• The solver outputs exitcode -7.

Exitcode -7 means that the solver could not proceed. A common cause is the problem being
infeasible. FORCESPRO does not have infeasibility detection to speed up the solution time.
However, one can use the function stages2qcqp to convert the FORCESPRO problem into a
standard (QC)QP that can be given to other QP solvers like quadprog to check for infeasibility.
See also Debugging a formulation.

• I am generating code from 32-bit MATLAB. When I run the code it produces a seg-
fault. What is the problem?

By default, the code is compiled will all optimizations turned on (-O3). We have observed that
sometimes there are problems when linking on 32-bit versions of MATLAB. This problem does
not occur when the compiler optimization flags are set to -O0, -O1, or -O2. You can change
this setting using the following flag set to the appropriate value.

codeoptions.optlevel = 2;

• I am getting exitflag -6, -8 or -10 when I run my solver

In this case it is a good idea to check that the nonlinear functions provided to the solver
are well-defined and that they don’t produce NaNs or Infs. See section Calling the nonlin-
ear functions from Matlab or Python for how to call the nonlinear functions along with their
derivatives directly in MATLAB or Python. If the solver returns exitflag −6, −8 or −10 in the first
iteration one needs to check that

Matlab

Python

problem.x0

problem['x0']

does not yield NaN or Inf when the nonlinear functions are evaluated on it. E.g. if one has
generated a solver named FORCESsolver which does not use any real-time parameters, one
needs to check that the following code does not produce an error

Matlab

Python

jj = 1;
for ss = 1:model.N
z = problem.x0[jj:(jj+model.nvar)];
c, jacc = FORCESsolver_dynamics(z, [], ss);
ineq, jacineq = FORCESsolver_inequalities(z, [], ss);
obj, gradobj = FORCESsolver_objective(z, [], ss);
assert(any(isnan(c) | isinf(c), 'all'), ['Encountered NaNs or Infs in c at stage ',

→˓ num2str(ss)]);
assert(any(isnan(jacc) | isinf(jacc), 'all'), ['Encountered NaNs or Infs in jacc␣

→˓at stage ', num2str(ss)]);
assert(any(isnan(ineq) | isinf(ineq), 'all'), ['Encountered NaNs or Infs in ineq␣

→˓at stage ', num2str(ss)]);
assert(any(isnan(jacineq) | isinf(jacineq), 'all'), ['Encountered NaNs or Infs in␣

→˓jacineq at stage ', num2str(ss)]);
assert(any(isnan(obj) | isinf(obj), 'all'), ['Encountered NaNs or Infs in obj at␣

→˓stage ', num2str(ss)]);
assert(any(isnan(gradobj) | isinf(gradobj), 'all'), ['Encountered NaNs or Infs in␣

→˓gradobj at stage ', num2str(ss)]);
jj = jj + model.nvar;

(continues on next page)

482 Chapter 21. Frequently asked questions

FORCESPRO User Manual

(continued from previous page)

end
disp('Did not encounter any NaNs or Infs');

import numpy as np

jj = 0
x0 = problem['x0']
for ss in range(model.N):
z = x0[jj:model.nvar]
c, jacc = solver.dynamics(z, stage=ss)
ineq, jacineq = solver.ineq(z, stage=ss)
obj, gradobj = solver.objective(z, stage=ss)
assert any(np.isnan(c)) or any(np.isinf(c)), 'Encountered NaN in c at stage ' +␣

→˓str(ss)
assert any(np.isnan(jacc)) or any(np.isinf(jacc)), 'Encountered NaN in jacc at␣

→˓stage ' + str(ss)
assert any(np.isnan(ineq)) or any(np.isinf(ineq)), 'Encountered NaN in ineq at␣

→˓stage ' + str(ss)
assert any(np.isnan(jacineq)) or any(np.isinf(jacineq)), 'Encountered NaN in␣

→˓jacineq at stage ' + str(ss)
assert any(np.isnan(obj)) or any(np.isinf(obj)), 'Encountered NaN in obj at stage '␣

→˓+ str(ss)
assert any(np.isnan(gradobj)) or any(np.isinf(gradobj)), 'Encountered NaN in␣

→˓gradobj at stage ' + str(ss)
jj = jj + model.nvar

print('Did not encounter NaNs')

Note: See also Real-time SQP Solver: Robotic Arm Manipulator (MATLAB & Python) for an
example of how to simulate the dynamics of the system directly in MATLAB and Python.

21.4 Simulink interface

• When I have a long prediction horizon I have too many input and output ports that
I need to wire up in my Simulink interface. When I change my prediction horizon I
need to re-wire them all again and this is a pain.

The new version of FORCESPRO provides a ‘compact’ version of all Simulink interfaces that
can be called with stacked parameters and has a small and constant number of input ports
independent of the prediction horizon.

To check the dimensions of the new stacked parameters click on the ‘Help’ button in the
dialogue of the ‘compact’ Simulink block.

21.5 Code deployment

• I get the following error message when deploying a solver on dSpace hardware:
OPUS MAKE: Don’t know how to make . . .

This is well-known deployment issue with compiled files. During building for target the
compiler is looking for the source code of the solver. The resulting object file is added in
the folder <solvername>_<target_ext> which is automatically generated by the compiler.
Therefore, to use the object file you need to move it to that folder in order for the compiler

Chapter 21. Frequently asked questions 483

FORCESPRO User Manual

to detect it and skip compilation. A possible workaround is to use the static library of the
solver as specified in dSPACE deployment through Simulink Coder.

21.6 Other topics

• How can I obtain information about the KKT conditions at the solution?

The printlevel solver option allows the user to control how much information is printed
by the solver. See here for more information on how to define solver options.

When printlevel is set to 2 the solver outputs information related to the KKT conditions
at every iteration. In particular:

– res_eq is the maximum ||𝐶𝑖−1𝑧𝑖−1 +𝐷𝑖𝑧𝑖 − 𝑐𝑖||∞ for all 𝑖,

– If we rewrite all inequality constraints as𝐺𝑧 ≤ 𝑔 and 𝑠 are slack variables for the same
constraints, res_ineq is equal to ||𝐺𝑧 − 𝑔 + 𝑠||∞,

– If 𝜆 are the Lagrange multipliers for the inequality constraints, 𝜇 is equal to 𝜆⊤𝑠 di-
vided by the number of constraints, i.e. the average complementary slackness.

• What system information am I sharing by using FORCESPRO?

When contacting the solver generation server, the FORCESPRO client sends the follow-
ing system information:

– Machine username

– MAC address

– Fingerprints

The fingerprint is platform dependent. We create two fingerprints using different sys-
tem information to create hashes and validate with either of them in order to have a
more stable validation:

– For Windows, each fingerprint uses a subset of the below information:

* Mac addresses

* CPU ID (register with machine support)

* Volume Serial Number

* Volume GUID

– For MacOS, each fingerprint uses a subset of the below information:

* Cputype and Cpusubtype

* Network node hostname

* Mac addresses

– For Linux, each fingerprint uses a subset of the below information:

* Network node hostname

* /etc/machine-id

* Mac addresses

* Linux user uid

The above information is hashed to create the fingerprint which means that it cannot
be recovered by using the fingerprint.

484 Chapter 21. Frequently asked questions

FORCESPRO User Manual

• Why am I being asked to update the FORCESPRO client software every now and
then?

We have a development policy of continuous deployment, which unfortunately means
that we have to ask users to update their clients every time there is a substantial change
in the code. To make this process easier and faster, FORCESPRO comes with a func-
tionality that allows users to update their clients by simply typing the following in the
MATLAB command prompt:

>> updateClient

Chapter 21. Frequently asked questions 485

FORCESPRO User Manual

486 Chapter 21. Frequently asked questions

FORCESPRO User Manual

Bibliography

[GörSch] Göhrle, C.; Schindler, A.; Wagner, A.; Sawodny, O.: Design and Vehicle Implemen-
tation of Preview Active Suspension Controllers. IEEE Transactions on Control Sys-
tems Technology, pp.1135–1142, vol. 22, no. 3, May 2014

[HarMac14] Hartley, E. N.; Maciejowski, J. M.: Field programmable gate array based predic-
tive control system for spacecraft rendezvous in elliptical orbits. In Optimal Control
Applications and Methods, Mar 2014

[VukLoock] Vukov, Milan & Van Loock, Wannes & Houska, Boris & Ferreau, Joachim & Swev-
ers, Jan & Diehl, Moritz. (2012). Experimental validation of nonlinear MPC on an
overhead crane using automatic code generation. Proceedings of the American
Control Conference. 6264-6269. 10.1109/ACC.2012.6315390.

[QuirDiehl] Quirynen, Rien & Gros, Sebastien & Diehl, Moritz. (2013). Efficient NMPC for non-
linear models with linear subsystems. Proceedings of the IEEE Conference on De-
cision and Control. 5101-5106. 10.1109/CDC.2013.6760690.

[SicSci09] Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G.. Robotics: Modelling, planning and
control. Berlin: Springer, 2009.

[BerUnb] S. Daniel-Berhe; H. Unbehauen: Experimental physical parameter estimation of a
thyristor driven DC-motor using the HMF-method. Control Engineering Practice,
6:615–626, 1998

[GarJor77] Garrard, W.L.; Jordan, J.M..: Design of Nonlinear Automatic Control Systems. In:
Automatica 1977, vol. 13, 497-505.

[JiaJibItoGor19] Jia Y.; Jibrin, R.; Itoh Y.; Görges, D.: Energy-Optimal Adaptive Cruise Control
for Electric Vehicles in Both Time and Space Domain based on Model Predictive
Control. In: IFAC-PapersOnLine, vol. 50, no. 2, 2017, pp. 13-20, 2019.

[JiaJibGor20] Jia, Y.; Jibrin, R.; Görges, D.: Energy-Optimal Adaptive Cruise Control for Electric
Vehicles Based on Linear and Nonlinear Model Predictive Control. In: IEEE Trans-
actions on Vehicular Technology, vol. 69, no. 12, pp. 14173-14187, Dec. 2020.

[Fastned] Fastned: Charging with a BMW i3, https://support.fastned.nl/hc/en-gb/articles/
204784718-Charging-with-a-BMW-i3

[xEngineer] X-engineer: Why do we need gears?, https://x-engineer.org/need-gears/

[BMWi3] BMW Group: Technical specifications of the BMW i3 (120 Ah), https://www.press.
bmwgroup.com/global/article/detail/T0285608EN/

[JiaJibItoGor19_2D] Jia Y.; Jibrin, R.; Itoh Y.; Görges, D.: Energy-Optimal Adaptive Cruise Con-
trol for Electric Vehicles in Both Time and Space Domain based on Model Predic-
tive Control. In: IFAC-PapersOnLine, vol. 50, no. 2, 2017, pp. 13-20, 2019.

[JiaJibGor20_2D] Jia, Y.; Jibrin, R.; Görges, D.: Energy-Optimal Adaptive Cruise Control for
Electric Vehicles Based on Linear and Nonlinear Model Predictive Control. In: IEEE
Transactions on Vehicular Technology, vol. 69, no. 12, pp. 14173-14187, Dec. 2020.

[Fastned_2D] Fastned: Charging with a BMW i3, https://support.fastned.nl/hc/en-gb/articles/
204784718-Charging-with-a-BMW-i3

487

https://support.fastned.nl/hc/en-gb/articles/204784718-Charging-with-a-BMW-i3
https://support.fastned.nl/hc/en-gb/articles/204784718-Charging-with-a-BMW-i3
https://x-engineer.org/need-gears/
https://www.press.bmwgroup.com/global/article/detail/T0285608EN/
https://www.press.bmwgroup.com/global/article/detail/T0285608EN/
https://support.fastned.nl/hc/en-gb/articles/204784718-Charging-with-a-BMW-i3
https://support.fastned.nl/hc/en-gb/articles/204784718-Charging-with-a-BMW-i3

FORCESPRO User Manual

[xEngineer_2D] X-engineer: Why do we need gears?, https://x-engineer.org/need-gears/

[BMWi3_2D] BMW Group: Technical specifications of the BMW i3 (120 Ah), https://www.press.
bmwgroup.com/global/article/detail/T0285608EN/

[JiaJibGor20_2D_modelling] Jia, Y.; Jibrin, R.; Görges, D.: Energy-Optimal Adaptive Cruise
Control for Electric Vehicles Based on Linear and Nonlinear Model Predictive Con-
trol. In: IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp. 14173-14187,
Dec. 2020.

488 Bibliography

https://x-engineer.org/need-gears/
https://www.press.bmwgroup.com/global/article/detail/T0285608EN/
https://www.press.bmwgroup.com/global/article/detail/T0285608EN/

	Introduction
	Troubleshooting and support
	Licensing
	Commercial licensing
	Academic licensing

	Citing FORCESPRO
	Product Life Cycle
	Release Notes
	New features in FORCESPRO 6.1.0
	Improvements in FORCESPRO 6.1.0
	Bug Fixes in FORCESPRO 6.1.0
	Improvements in FORCESPRO 6.0.1
	Bug Fixes in FORCESPRO 6.0.1
	New features in FORCESPRO 6.0.0
	Improvements in FORCESPRO 6.0.0
	Bug Fixes in FORCESPRO 6.0.0
	New features in FORCESPRO 5.1.0
	Improvements in FORCESPRO 5.1.0
	Bug Fixes in FORCESPRO 5.1.0
	New features in FORCESPRO 5.0.1
	Improvements in FORCESPRO 5.0.1
	Bug Fixes in FORCESPRO 5.0.1
	New features in FORCESPRO 5.0.0
	Improvements in FORCESPRO 5.0.0
	Bug Fixes in FORCESPRO 5.0.0
	New features in FORCESPRO 4.4.0
	Improvements in FORCESPRO 4.4.0
	Bug Fixes in FORCESPRO 4.4.0
	Improvements in FORCESPRO 4.3.1
	Bug Fixes in FORCESPRO 4.3.1
	New features in FORCESPRO 4.3.0
	Improvements in FORCESPRO 4.3.0
	Bug Fixes in FORCESPRO 4.3.0
	Improvements in FORCESPRO 4.2.1
	Bug Fixes in FORCESPRO 4.2.1
	New features in FORCESPRO 4.2.0
	Improvements in FORCESPRO 4.2.0
	Improvements in FORCESPRO 4.1.1
	Bug Fixes in FORCESPRO 4.1.1
	New features in FORCESPRO 4.1.0
	Improvements in FORCESPRO 4.1.0
	Bug Fixes in FORCESPRO 4.1.0
	New features in FORCESPRO 4.0.0
	Improvements in FORCESPRO 4.0.0
	Bug Fixes in FORCESPRO 4.0.0
	New features in FORCESPRO 3.1.0
	Improvements in FORCESPRO 3.1.0
	Bug Fixes in FORCESPRO 3.1.0
	Improvements in FORCESPRO 3.0.1
	Bug Fixes in FORCESPRO 3.0.1
	New features in FORCESPRO 3.0.0
	Improvements in FORCESPRO 3.0.0
	Bug Fixes in FORCESPRO 3.0.0
	New features in FORCESPRO 2.0.0
	Improvements in FORCESPRO 2.0.0
	Bug Fixes in FORCESPRO 2.0.0
	New features in FORCESPRO 1.9.1
	Improvements in FORCESPRO 1.9.1
	New features in FORCESPRO 1.9.0
	Improvements in FORCESPRO 1.9.0
	Bug Fixes in FORCESPRO 1.9.0
	New features in FORCESPRO 1.8.0
	Improvements in FORCESPRO 1.8.0
	Bug Fixes in FORCESPRO 1.8.0
	New features in FORCESPRO 1.7.0
	Improvements in FORCESPRO 1.7.0
	Bug Fixes in FORCESPRO 1.7.0

	Version history of manual

	License Variants
	Variant Summary
	Variant S
	Variant M
	Variant L

	Installation
	Obtaining FORCESPRO
	Installation of the MATLAB Client
	System requirements
	Keeping FORCESPRO up to date
	Installing and running older versions of FORCESPRO

	Installation of the Python Client
	Quick Guide
	Windows (PowerShell)
	Linux Ubuntu
	Mac

	Requirements
	Python
	Python Packages
	Available Compiler

	Adding the FORCESPRO Python Client to your Python path
	Option A: Setting the PYTHONPATH environment variable
	Option B: Setting sys.path inside Python scripts

	Keeping FORCESPRO up to date
	Installing and running older versions of FORCESPRO

	Backward Compatibility
	Determining Client Version
	Changes from Version 6.1.0
	Changes from Version 6.0.0
	Changes from Version 5.0.1
	Changes from Version 5.0.0
	Changes from Version 4.3.0
	Changes from Version 4.2.0
	Changes from Version 4.1.0

	Y2F Interface
	Installing Y2F
	Generating a solver
	Calling the solver
	Solver info
	Exitflags
	Additional diagnostics

	Performance
	Examples

	MathWorks Linear MPC Plugin
	Different types of solvers
	Different algorithms
	Generating a QP solver from an MPC object
	Solving a QP from MPC online data
	Using the FORCESPRO MPC Simulink block
	Deploy to dSpace MicroAutoBox II using the FORCESPRO MPC Simulink block
	Examples

	MathWorks Nonlinear MPC Plugin
	Introduction
	The SQP Fast algorithm for nlmpc
	Defining a nonlinear model
	Generating an NLP solver
	Using an “nlmpc” object
	Using an “nlmpcMultistage” object

	Simulation in MATLAB and Simulink
	Code generation in MATLAB and Simulink
	Examples
	Controlling a CSTR reactor
	Creating an NLMPC object
	Specifying solver options
	Generating the NLP solver
	Calling the solver
	Results

	Lane following example
	Create an NLMPC object
	Deploying the Lane Following Model on Speedgoat

	Rocket landing example
	The dynamical model
	Constructing a NLMPCMultistage object
	Specifying solver options and generating a solver
	Results

	Low-level interface
	Supported problem class
	Multistage struct
	Dimensions
	Cost function
	Equality constraints
	Lower and upper bounds
	Polytopic constraints
	Quadratic constraints
	Example

	Binary constraints
	Declaring parameters
	Declaring Solver Outputs
	Example

	Generating the solver
	Calling the generated low-level solver
	Debugging a formulation
	The QP_FAST algorithm
	Tuning the QP_FAST algorithm
	The QP_FAST options

	High-level Interface
	Supported problems
	Canonical problem for discrete-time dynamics
	Continuous-time dynamics
	Other variants
	Function evaluations

	Expressing the optimization problem in code
	Model Initialization
	Model Initialization in Matlab
	Model Initialization in Python

	Dimensions
	Objective
	Equalities
	Discrete-time
	Continuous-time

	Initial and final conditions
	Inequalities
	Variations
	Varying dimensions, parameters, constraints, or functions
	Providing analytic derivatives

	Single precision callbacks

	Generating a solver
	Declaring outputs

	Calling the solver
	Initial guess
	Initial and final conditions
	Real-time parameters
	Tolerances as real-time parameters
	Exitflags and quality of the result

	External function evaluations in C
	Interface
	Expected function signature
	Custom data structures as parameters

	Supplying function evaluation information
	Rules for function evaluation code
	Matrix format
	Multiple source files
	Stage-dependent functions
	External function return values

	Calling the nonlinear functions from Matlab or Python
	Calling the nonlinear functions from MATLAB
	Calling the nonlinear functions from Python

	Mixed-integer nonlinear solver
	Writing a mixed-integer model
	Mixed-integer solver customization via user callbacks
	Providing a guess for the incumbent

	Sequential quadratic programming algorithm
	How to generate a SQP solver
	Different SQP variants
	Tuning the SQP Fast solver
	The hessian approximation and line search settings
	Controlling the initial guess at run-time
	Additional code options specific to the SQP-RTI solver

	Differences between the MATLAB and the Python client
	Examples

	Simulating your custom controller in Simulink®
	The S-Function interface
	The Coder interface
	S-Function vs Coder interface
	FORCESPRO Simulink® blocks
	Getting Started - Basic MPC Regulation State Feedback Example
	Generating the FORCESPRO solver
	Workflow for S-Function interface
	Workflow for Coder interface
	Simulation and checking of results

	Real-time control with the Simulink® block
	Input and Output Ports in the Compact Interface

	Examples
	How to
	Basic Example
	How to Incorporate Preview Information in the MPC Problem
	Introduction
	Use preview information in the MATLAB® interface
	Comparison of MPC with Preview and Standard MPC

	HOW TO: Implement an MPC Controller with a Time-Varying Dynamics
	Introduction
	Implementation
	Comparison of the two approaches

	How to Implement 1-Norm and Infinity-Norm Cost Functions
	Introduction
	1-norm reformulation
	-norm formulation

	HOW TO: Implement Rate Constraints
	Problem formulation
	Implementation
	Simulation Results

	Binary MPC Example
	Simulation result
	Details on problem reformulation

	Y2F interface: Basic example
	Defining the problem data
	Defining the MPC problem
	Generating a solver
	Calling the generated solver
	Simulation
	Results
	Variation 1: Parametric cost
	Variation 2: Time-varying dynamics
	Variation 3: Time-varying constraints

	Y2F interface: Trajectory Optimization for Quadrotor Flight
	Defining the problem parameters
	Defining the MPC problem
	Generating a solver
	Calling the generated solver
	Results

	Low-level interface: Active Suspension Control
	Introduction
	Disturbance Model: Speed Bump
	Implementation of Preview Information
	Comparison of Passive Vehicle and Active Suspension Control Using Preview Information

	Low-level interface: Robust estimation (Kalman filter)
	System Description
	Robust Kalman filter
	Simulation and Comparison

	Low-level interface: Spacecraft Rendezvous
	Introduction
	Model
	Constraints
	Objective
	Spacecraft Rendezvous Manoeuvers with and without 1-Norm Cost

	Low-level interface: DC/DC converter
	Example Overview
	Special Requirements
	Introduction - Control of a DC/DC Converter
	Control Objective by Using Model Predictive Control
	Model Predictive Control Design via FORCESPRO MATLAB® Interface
	Simulation of the PLECS® Model with Model Predictive Control
	Comparison of Model Predictive Control and PI Control

	High-level interface: Basic example
	Defining the problem data
	Defining the MPC problem
	Generating a solver
	Calling the generated solver
	Simulation
	Results

	High-level interface: Obstacle avoidance (MATLAB & Python)
	Defining the MPC Problem
	Objective
	Matrix equality constraints
	Runtime Parameters
	Inequality constraints
	Dimensions
	Initial conditions

	Generating a solver
	Calling the generated solver
	Results
	Variation: External functions

	High-level interface: Indoor localization (MATLAB & Python)
	Time of flight measurements
	Estimation error
	Minimize the error
	Implementation

	High-level interface: Path tracking example (MATLAB)
	Defining the MPC Problem
	Objective
	Equality constraints
	Bounds
	Dimensions

	Generating a solver
	Calling the generated solver
	Choosing the Path

	Results
	Using the SQP Fast solver

	High-level interface: Legacy path tracking example (MATLAB & Python)
	Defining the MPC Problem
	Objective
	Matrix equality constraints
	Bounds
	Dimensions
	Initial conditions

	Generating a solver
	Calling the generated solver
	Results

	High-level interface: Rate Constraints
	Implementation in MATLAB
	Results

	High-level interface: Soft Constraints
	Implementation in MATLAB
	Results

	Controlling a crane using a FORCESPRO NLP solver
	Defining the MPC problem
	Model dimensions and dynamics
	System constraints
	Objective function

	Generating a FORCESPRO interior point NLP solver
	Calling the crane solver
	Results

	Real-time SQP Solver: Robotic Arm Manipulator (MATLAB & Python)
	Defining the MPC problem
	Tracking objective
	State and input constraints
	Initial condition and horizon length

	Generating a real-time SQP solver
	Calling the generated SQP solver
	Calling the dynamics used in the model directly in MATLAB/Python
	Results

	Controlling a DC motor using a FORCESPRO SQP solver
	Defining the MPC problem
	The tracking objective function
	The dynamics
	Input and state constraints
	Generating the FORCESPRO SQP solver
	Calling the solver
	Results

	Mixed-integer nonlinear solver: F8 Crusader aircraft
	Defining the problem data
	Objective
	Equality constraints
	Inequality constraints
	Initial and final conditions

	Defining the MPC problem
	Generating an MINLP solver
	Calling the generated MINLP solver
	Providing an initial guess at run-time
	Changing the parallelization strategy at run-time
	Results

	High-level interface: Optimal EV charging and speed profile example (MATLAB & PYTHON)
	Problem Overview
	Vehicle Dynamics
	Vehicle Energetics
	Bounds
	MPC Formulation
	Model Parameters

	Defining the MPC Problem
	Objective function
	Equality constraints
	Inequality constraints
	Generating the FORCESPRO NLP solver
	Calling the solver
	Results

	High-level interface: Extended optimal EV charging and speed profile example using a 2D motor efficiency map (MATLAB & PYTHON)
	Problem Overview
	Vehicle Dynamics
	Vehicle Energetics
	Bounds
	MPC Formulation
	Model Parameters

	Defining the MPC Problem
	Scaling
	Objective function
	Equality constraints
	Inequality constraints
	Generating the FORCESPRO NLP solver
	Calling the solver
	Results

	Parametric problems
	Defining parameters
	Example
	Parametric Quadratic Constraints
	Diagonal Hessians
	Sparse Parameters
	Special Parameters
	Python: Column vs Row Major Storage Format

	Code Deployment
	Main Targets
	High-level interface
	Low-level interface
	Y2F interface
	C interface: memory allocations
	Internal memory
	External memory
	Code options related to solver memory
	Obtaining memory size

	dSPACE deployment through Simulink Coder
	Platform Specific Configurations
	Platform name codeoption
	Simulink Model HW Target Configuration

	High-level interface
	Y2F interface
	Instructions

	dSPACE deployment through ConfigurationDesk
	Code Generation
	Solver Execution

	Speedgoat
	High-level interface
	Instructions
	Figures

	Y2F interface
	Instructions
	Figures

	Speedgoat QNX
	High-level interface
	Instructions
	Figures

	Y2F interface
	Instructions
	Figures

	Multicore parallelization
	Internal parallelism
	External parallelism
	Combining external and internal parallelism

	Licensing
	Machine Identification
	Client Identification
	Solver Identification

	Static License
	System requirements for static license
	Generating solvers with static license
	Running solvers with static license

	License Files
	System requirements for license files
	Generating solvers with license files
	Generating license files
	Running solvers with license files

	Floating Licenses
	Floating Licenses Proxy
	System requirements for floating licenses
	Using the Floating Licenses Proxy
	Floating License Attributes
	Generating solvers with floating licenses
	Configure floating licenses during code generation
	Running solvers with floating licenses

	Autotuner
	Autotuner Options
	Collecting Tuning Data
	Validation

	Solver Options
	Default options
	General options
	Solver name
	Print level
	Maximum number of iterations
	Parametric number of iterations
	Compiler optimization level
	Measure Computation time
	Solver Timeout
	Introduction
	Usage
	SQP inner QP timeout
	Return Value

	Early-terminate solver
	Options related to multicore parallelization
	Datatypes
	Code generation server
	Enforcing solver regeneration
	Overwriting existing solvers
	Skipping the Build of Simulink S-function
	Solver info in Simulink block
	Skipping automatic cleanup
	MATLAB network communications
	Python network communications
	Target platform
	Cross compilation
	Mac compilation
	SIMD instructions

	Tips for solving QPs in single precision
	MISRA 2012 compliance
	Optimizing code size
	Optimizing Linear Algebra Operations
	Dump problem formulation and data
	Identifying FORCESPRO solver

	High-level interface options
	Integrators
	Expert options for implicit integrators
	Code-generated integrators
	Linear subsystem exploitation

	Accuracy requirements
	Barrier strategy
	Hessian approximation
	BFGS options
	Gauss-Newton options

	Line search settings
	Regularization
	Static regularization
	Dynamic regularization

	Linear system solver
	Iterative refinement

	Automatic differentiation tool
	Automatic differentiation expression class
	Re-use of callback code
	Safety checks

	Convex branch-and-bound options
	Solve methods
	Primal-Dual Interior-Point Method
	Solver Initialization
	Initial Complementary Slackness
	Accuracy Requirements
	Line Search Settings
	Regularization

	Alternating Directions Method of Multipliers
	Accuracy requirements
	Method parameters
	Precomputations

	Dual Fast Gradient Method
	Primal Fast Gradient Method
	Accuracy requirements
	Method parameters
	Warm starting

	Exitflags
	Exitflags and quality of the result
	Mixed integer Nonlinear Programming exitflags

	Modelling Utilities
	Interpolations 1D (e.g. splines)
	Polynomial Parameterization
	Automatic Fit from Data
	Application Example

	Interpolations 2D (B-splines)
	B-Spline Representation
	Parametric B-Spline Representation
	Fitting B-Spline on Gridded Data
	Fitting B-Spline on Arbitrary Data
	Application Example

	Smooth Approximations
	Smooth Minimum
	Smooth Maximum

	Dumping Problem Formulation and Data
	Why to use the dump tool?
	How to use the dump tool?
	Symbolic dumps
	Dumping the problem formulation
	Dumping problem data
	Dumping the problem formulation and data at once
	Running a dumped problem
	Limitations of symbolic dumps

	Legacy dumps
	Dumping the problem formulation
	Dumping problem data
	Running a dumped problem
	Limitations of legacy dumps

	Problem dumps from C
	Download and install msgpack for C
	Enable the Generation of the Dump Functions
	Dumping Problem Data
	Loading Problem Data

	Frequently asked questions
	Features of FORCESPRO
	Issues during code generation
	Issues when running the solver
	Simulink interface
	Code deployment
	Other topics

	Bibliography

